Let’s Talk Money: Evaluating the Security Challenges of
Mobile Money in the Developing World

Sam Castle
University of Washington
stcastle@cs.washington.edu

Franziska Roesner
University of Washington
franzi@cs.washington.edu

ABSTRACT

Digital money drives modern economies, and the global adop-
tion of mobile phones has enabled a wide range of digital
financial services in the developing world. Where there is
money, there must be security, yet prior work on mobile
money has identified discouraging vulnerabilities in the cur-
rent ecosystem. We begin by arguing that the situation is
not as dire as it may seem—many reported issues can be
resolved by security best practices and updated mobile soft-
ware. To support this argument, we diagnose the problems
from two directions: (1) a large-scale analysis of existing fi-
nancial service products and (2) a series of interviews with
7 developers and designers in Africa and South America.
We frame this assessment within a novel, systematic threat
model. In our large-scale analysis, we evaluate 197 Android
apps and take a deeper look at 71 products to assess specific
organizational practices. We conclude that although attack
vectors are present in many apps, service providers are gen-
erally making intentional, security-conscious decisions. The
developer interviews support these findings, as most partic-
ipants demonstrated technical competency and experience,
and all worked within established organizations with regi-
mented code review processes and dedicated security teams.

Categories and Subject Descriptors

K.4.4 [Computers and Society]: Electronic Commerce—
security

Keywords

ICTD; mobile money; fraud; Android; finance; mBanking;
human factors

1. INTRODUCTION

Digital financial services (DFS) constitute a rapidly grow-
ing industry that provides access to formal financial instru-
ments through mobile technology. These services operate on
existing mobile networks and are managed by telcos, banks,
and third-party software companies. One critical aspect is

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ACM DEV ’16 November 17-22, 2016, Nairobi, Kenya
© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4649-8/16/11.

DOL: http://dx.doi.org/10.1145/3001913.3001919

Fahad Pervaiz
University of Washington
fahadp@cs.washington.edu

Galen Weld
Cornell University
gcw33@cornell.edu

Richard Anderson
University of Washington

anderson@cs.washington.edu

that these services allow individuals with no formal finan-
cial history to establish an account, often without needing
to travel to a physical bank location.

The basic services offered by DFS applications include
monetary deposits, withdrawals, and person-to-person trans-
actions. Many include additional value-added services, such
as government-to-person payments, loans, and payments for
goods and utilities. Deposits and withdrawals are almost al-
ways handled by a network of agents, typically shop owners
or community members, who are employed by the service
operator. They accept cash deposits in exchange for digital
currency transferred to the user’s account, and they keep
stores of cash for users to withdraw their digital balances.

In this work, we focus on security vulnerabilities in cur-
rent DFS deployments. We begin by scoping our analysis
within a threat model, and then we analyze a set of existing
products. To address the potential vulnerabilities uncovered
in our research and in prior work, we examined the current
development process by interviewing app developers. Specif-
ically, our contributions are threefold:

e We systematically define a threat model to outline po-
tential attacks on DFS applications, and we use this
model to inform future design decisions and as an eval-
uative framework for security analysis.

e We conduct an in-depth security analysis on 397 cur-
rent DFS deployments, including 197 Android apps,
and we consider a large number of factors, which have
not been studied in detail previously for DF'S products.

o We interview 7 developers and project managers. These
interviews offer convincing insights into current prac-
tices and noteworthy issues for further research.

2. MOTIVATION

Strong security and privacy measures are critical to ex-
panding DFS products to the world’s poor and unbanked.
For a person who has been living their entire life with struc-
tured financial institutions, falling victim to a security fail-
ure may permanently divert them from that particular bank
or service. For a person with no former structured financial
experience, running into a security failure may deter them
from formal financial systems as a whole. For these rea-
sons, we consider security and privacy issues to be especially
paramount in the context of the developing world.

A recent analysis on mobile money by Reaves et al. [28]
showed that “the majority of these apps fail to provide the
protections needed by financial services. . . threatening to erode

trust in branchless banking and hinder efforts for global fi-
nancial inclusion.” We consider these claims below.

Response to Prior Work. In their review of vulnerabil-
ities in existing Android apps, Reaves et al. [28] consider
four broad categories: SSL/TLS & certificate verification,
non-standard cryptography, access control, and information
leakage. We consider each of these in turn.

SSL/TLS certificate verification along with non-standard
cryptography can be remedied by correctly configuring
SSL/TLS on the server and using standard encryption al-
gorithms. We dig deeper into these possibilities in Sec-
tion 5, where we present several case studies in which de-
velopers are at the mercy of business partners who manage
the server setup or encryption methods. The main takeaway
here is that from a programmer’s perspective, viable solu-
tions to these issues exist, and in our experience, developers
are aware of best practices, but the primary bottleneck may
be institutional factors, such as differing priorities among
partner organizations.

The next point, access control, revolves around user au-
thentication protocols and communicating user credentials.
The mentioned vulnerabilities are mainly the result of im-
proper encryption or of communicating sensitive information
over an insecure channel. Weak password requirements, on
the other hand, are a concern, but our app analysis found
that many apps are defending against related attacks by
blocking an account after 3 to 5 failed password attempts.
The failed attempt restriction guards against brute-force at-
tacks on all possible passwords. In Section 4.5, we provide
a more detailed analysis of the existing app ecosystem.

Information leakage concerns private user data, which can
be compromised either during client-server communication
or via naive storage on the client device. Reaves et al. ex-
plain that apps write sensitive data in private logs, mostly
for debugging purposes, but these logs can be accessed by
any other app with the READ_LOG permission in Android ver-
sions older than Version 4.1.

Although this is a serious potential threat for data leak-
age, it is arguably not realistic in practice. Leakage from
private logs can only happen in limited cases because only
4% of Android devices currently run these older, vulnerable
versions [1]. The majority of apps we studied, however, still
allow older versions and thus fail to completely shut off this
vulnerability (Figure 1). As we discuss in more detail in
Section 4.2, most apps are not at risk to this issue—our app
analysis identified only two apps that write data to a file.

Android. In this work, we focus on mobile applications
built for Android. A majority of prior work in security for
mobile devices has focused on the Android platform, and
Android seems to dominate the market share in the regions
where our work is focused—primarily Africa, South Amer-
ica, and Southern Asia—as evidenced by relatively low us-
age of the iOS default browser, Safari, on mobile devices [3].
Additional research is needed to generalize claims to other
mobile platforms, though studies have shown that other sys-
tems encounter similar problems to those in Android [11,16].

3. THREAT MODEL

Before assessing security vulnerabilities, it is essential to
understand the range of possible attacks and potential ad-
versaries. This process, known as threat modeling, is com-
mon within the computer security community. Having an
understanding of potential security threats helps develop-

ers choose which security features to implement and allows
researchers and quality assurance teams to ground their se-
curity analyses in reality. In this section, we enumerate a
wide range of attacks that could compromise the security of
mobile banking applications. This threat model is focused
on DFS in a developing world context and is based on in-
formation from academic research [9,10,13,28,29], industry
reports [4,19,21], real-world exploits [5-7], and our own in-
terviews with developers.

We consider this threat model as a contribution in itself
because it incorporates a diverse array of information into
a systematic, novel documentation of possible attacks spe-
cific to the context of DF'S within the developing world. We
expand upon previous work, with this threat model process
being most similar to work from Cobb et al. [13], who ex-
amined data collection processes in the developing world.
This model is a theoretical collection of possible attacks and
adversaries, and thus it is a superset of the actual attacks
that occur in deployed applications. When considering each
risk, computer security is often about managing tradeoffs
between total protection and other factors, including usabil-
ity and resources. This threat model identifies the possible
risks, and our later sections on app analysis and developer
interviews will inform understanding of both the likelihood
and consequence of those risks.

Security Goals. In this work, we consider both attacks
on users and attacks on organizations. User security has
been the primary focus of previous work [28], but in our
interviews with developers, we found that it is necessary to
consider the importance of protecting company assets.
Computer security goals are often modeled around the
“CIA” triad: confidentiality, integrity, and availability. Con-
fidentiality is akin to privacy, meaning the protection of any
sensitive or identifying information about a customer, such
as biometric data, account balance, and passwords. Integrity
refers to the accuracy and trustworthiness of data—if a user
initiates a transaction to pay a merchant, it is important
that the correct amount of money is sent to the correct re-
cipient. Availability is the need for access to services within
a reasonable time frame; for example, a customer’s money
should be available for withdrawal when they need it.

Potential Adversaries. We identify actors who may be
motivated to compromise any of the above security goals.

e (Customers or other company outsiders may attempt to
steal money or information from unsuspecting users, or
they may steal money and services from the organiza-
tion itself. For attacks on users, friends and family
members pose unique security challenges because they
may have access to personal information, such as the
user’s password, device, or account recovery details.

e Agents act as intermediaries between users and their
accounts, and agents can abuse this position in ways
such as charging extra fees or secretly depositing money
into their own accounts.

e Organization employees, beyond agents, may have ac-
cess to confidential information, such as user account
credentials or lingering security vulnerabilities. A rogue
employee may use this knowledge to steal money or sell
sensitive information to other adversaries.

Potential Attacks. Table 1 summarizes concrete possible
attacks by which potential adversaries may try to compro-
mise the above security goals.

Attack Name

Description

>, External Apps In early versions of Android, apps can read private data stored by other apps on the same device.

pE)

-'?'g External Libraries Developers often include 3rd-party libraries in their applications for social media, advertisements, cryp-
= tography, etc. Such libraries can introduce unintentional vulnerabilities or actively-malicious code, and
] researchers have found that legitimate libraries may be duplicated and repackaged with malware [11].
.-%) Advertising and analytics libraries are also known to track user data [14].

qé SMS Intercept When apps communicate sensitive data via SMS, adversaries can intercept the SMS to learn private
o information about an individual or to take control of a user’s account activity. SMS communications
@) have known vulnerabilities [23], and Android has known issues in communications between apps [12].

Server Attack An adversary gains unauthorized access to the service’s server. This includes full root exploits as well
as gaining access to partial server logs, database information, or proprietary source code.

Man-in-the- An adversary is able to intercept network traffic between the client and server. This allows the adversary

Middle (MITM) to observe any transmitted information and to also send fake data to either party.

Authentication There are many ways in which an adversary can gain unauthorized access to a user’s account. These

Attack attacks are facilitated by services with unlimited login attempts, weak password reset procedures, and

b accounts where the user ID is the phone number, which is often considered public information.

o=

E‘O SMS Spoof This fraud occurs when a service uses SMS to communicate with users. When used for receipts, one user
i) can send an SMS to another user to “confirm” a transaction, when in fact no money has been transferred.
=] Fraudsters may also be able to pose as the organization to engineer phishing attacks.

[

Agent-driven Many people, due to illiteracy or general fear of making a mistake, trust agents to process transactions

Fraud on their behalf [21]. This enables a variety of attacks from agents targeting customers, such as stealing
money intended for deposits (SMS spoofing) or charging additional, unlawful fees. Customers can also
defraud agents with counterfeit currency or physical force.

Fake Accounts If new accounts are easy to obtain, fraudsters will have more opportunities to create disposable accounts
for scams. Attacks which rely on fake accounts can be mitigated by strict ID requirements for account
setup and a system for reporting and disabling fraudulent accounts.

Data Loss Rather than gaining access to sensitive information, the adversary destroys or corrupts business data.
This may range from a complete database wipe to erasing the data of a single user.

>, Denial-of-Service Targeting a service’s connection to the server with useless traffic can block actual traffic from reaching
= (DoS) the server. This is an attack on both the service provider and the customer—the organization loses
E revenue and reputation, and the customer cannot access their account.

,ij Theft of Services Customers can target organizations by gaining free use of services that would normally require payment.
< For example, apps may include zero-rated URLs, which can be extracted by tech-savvy individuals to
é bypass telco data walls and browse on the web without paying for a service bundle.

Device Theft

If an adversary is able to steal a user’s physical device, then the thief may be able to gain access to funds
or private information. Some services bind accounts to a user’s device in order to bypass password login
procedures, which would allow adversaries to easily compromise accounts on lost or stolen devices.

Table 1: Hypothetical attacks on mobile money apps.

4. APP ANALYSIS

In this section, we characterize security-related features
of current apps in the market in terms of their potential for
information leakage, their requested permissions, and their
inclusion of 3rd-party URLs. Then, we conduct a manual
analysis of websites for 71 different services.

4.1 Methodology

To build a comprehensive list of existing digital financial
services, we started with the GSMA mobile money deploy-
ment tracker [18]. This database includes “mobile-enabled
products and services in the developing world,” and it is
based on data provided by mobile network operators directly
to the GSMA. As of March 2016, the database contained 284
deployments, though some are similar services offered by the
same parent company but repackaged for different countries.
We consider these services as unique because during our in-
terviews with developers, we found that regulations in dif-
ferent countries require unique considerations. We used this
database as a starting point and also searched the web and
the Google Play Store for additional deployments.

We amassed a database of 397 services. Many of these
services operate only through USSD, but we found 210 that

have associated Android apps. Of these apps, 206 had avail-
able metadata on the Google Play Store, and Figure 2 shows
these 206 apps sorted by their total number of downloads.
Due to country-specific device compatibility, we were un-
able to download 13 of the 210 Android apps, so our large-
scale analysis considers only these 197 apps. After down-
loading the apps, we decompiled the apks using Apktool [2],
a tool for reverse engineering 3rd-party, closed, binary apps.

4.2 Information Leakage

In Section 2, we discussed a vulnerability identified by
Reaves et al. [28] in which sensitive data, logged by the app
for debugging purposes, is printed to Android’s log and can
be accessed by any other app on the device. This problem
was directly addressed by Android system updates, and in
Android Version 4.1 or higher, an app’s debug log files can
only be accessed by the app itself. At the time of this writ-
ing, 96% of active Android devices, defined by those which
accessed the Google Play Store in the previous week, are
operating with Android Version 4.1 or higher [1]. In the
context of emerging markets, this statistic is unknown.

Android apps in the Google Play marketplace must spec-
ify the lowest version of Android on which the app can run.

Versions 4.0.3 and
<«

older are insecure

Number of Apps

~ Q ~ el
v o 0 0w VQ" L A
Minimum Version Requirement

Figure 1: The minimum Android OS requirements
for the 206 apps. 8 apps specify requirements that
vary by device and are not depicted in this graph.

10,000,000 - 50,000,000
5,000,000 - 10,000,000
1,000,000 - 5,000,000
500,000 - 1,000,000
100,000 - 500,000
50,000 - 100,000
10,000 - 50,000
5,000- 10,000

1,000 - 5,000

500 - 1,000

100 - 500

10-50

0 15 30 45 60
Number of Apps
Figure 2: The number of downloads by app for the
206 apps with available data.

Number of Downloads

To really close the door on this vulnerability, apps should
elect to support only Version 4.1 or higher; however, only 11
(5%) of the 206 Android apps we studied enforce this ver-
sion requirement. A breakdown of the apps we studied and
the minimum Android OS version they support is shown in
Figure 1. Perhaps a greater prevalence of older phones in
emerging markets encourages service providers to offer com-
patibility, but this practice leaves more room for mistakes.
An alternate way that apps may leave data on the device
is by explicitly writing data files to storage. These files are
permanent, unlike logs that are ultimately overwritten as
new data is logged. Insecure apps may write these data files
using the Android shared preference MODE_WORLD_WRITEABLE
that writes data to the SD Card and makes it accessible by
all apps on the device. All apps should use MODE_PRIVATE for
storing private data. Conversely, this issue is moot if an app
simply does not log or write any data. During our interviews,
many developers claimed that their apps do not store any
data on the device. Of the 197 apps we surveyed, 1 app uses
MODE_WORLD_WRITEABLE, and 1 app uses MODE_PRIVATE.

4.3 Permissions

By decompiling AndroidManifest.xml files, we cataloged
the permissions requested by each of the 197 apps. As
shown in Figure 3, many of the permissions are to be ex-
pected, such as Internet and SMS access. SMS responses
are commonly used for balance inquiries or receipts, though
the relatively coarse granularity of the Android permission
system gives these apps unfettered access to all SMS mes-

INTERNET
ACCESS_NETWORK_STATE
READ_PHONE_STATE
WRITE_EXTERNAL_STORAGE
READ_CONTACTS
ACCESS_FINE_LOCATION
RECEIVE_SMS

CALL_PHONE

CAMERA

SEND_SMS
READ_EXTERNAL_STORAGE
READ_SMS
WRITE_CONTACTS
WRITE_SMS

BLUETOOTH

NFC

FLASHLIGHT
RECORD_AUDIO

0 20 40 60 80 100

Percent of Apps

Figure 3: A subset of the permissions requested by
the 197 Android apps we were able to download.

sages on the phone. Additionally, SMS communications can
be intercepted over the network [23], from other apps on the
device [12], or by intrusive people with access to the device.
65% of the apps request permission to write data to exter-
nal storage; this provides an upper bound on the potential
for information leakage described in the previous section.
Other permissions are more questionable—it is unclear
why a banking app would require access to a device’s flash-
light or microphone. The prevalence of over-privilege in An-
droid apps has been previously documented [17], but we did
not investigate how the apps use these permissions, so it is
unknown whether each app’s permissions are used for legit-
imate functionality, an unusual practice, or not used at all.
One possibility, based on prior research [27], is that external
advertising libraries are a cause of excessive permissions.

4.4 URLs and 3rd-Party Libraries

Apps communicate to servers for a variety of reasons. For
one, financial apps must send data to their own servers, yet
they also may include links to company pages, social media
pages, ad servers, analytics trackers, and more.

Figure 4 shows the use of HTTP and HTTPS URLSs within
the 197 Android apps. Half of all apps included more than 20
HTTPS URLs and more than 25 HTTP URLs. Our analysis
statically searched for URL strings in the decompiled code,
and we did not distinguish between URLs a user would need
to click on versus URLs that the app is definitely contacting.

All apps studied included HTTP URLs within the apps.
This opens the door to possible man-in-the-middle (MITM)
attacks by attackers in control of the network (e.g., a com-
promised router). If a user clicks a link that opens a page
over HT'TP, a MITM can substitute any other HTML page,
such as a fake login page to request the user’s PIN or pass-
word. This style of phishing attack is especially problem-
atic on mobile devices because previous research has shown
shortcomings with Android security indicators [15].

About 10% of the apps did not include any HT'TPS URLs.
Assuming these apps are transmitting sensitive information,
this indicates that these apps are sending this information
over HTTP connections and are possibly using custom en-
cryption algorithms. Custom encryption regularly leads to
mistakes [28], and in these cases, a passive MITM could gain
control over all communications. Additionally, common au-

1000 .
. '

100 .- .
7 S X S L
e . Al lt. ate ‘
= . " ...-‘.-". ': :

10 craa Bl

1 oo o oele .
1 10 100 1000

HTTP

Figure 4: Distribution of HTTPS versus HTTP
URLs in each of the 197 apps studied. Each point
represents a single app.

tomated tools, such as MalloDroid [15], for detecting vul-
nerabilities in SSL/TLS connections would not flag the app
because the apps are not misusing SSL—they are just not
using it, an issue previously identified by Reaves et al. [28].

A large number of apps include links to common social
media sites, and the most common social media URLSs across
apps are shown in Figure 5. This presents a potential hidden
privacy violation because these platforms may track user
information, including location, unique device ID, and other
identifying details [14]. Users may be unaware of tracking,
and user perception of privacy concerns over tracking are
not well understood in the developing world.

Other tracking and advertising libraries, shown in Fig-
ure 6, were also fairly common. All of the sites in Figure 6
are libraries which have been shown to require additional
Android app permissions and track sensitive user data [27].
These libraries also present a security concern because they
include 3rd-party code not written by the original app devel-
opers. A malicious or buggy library can introduce new data
leaks and security vulnerabilities into any app. In prior re-
search, Chen et al. [11] characterized the prevalence of these
attacks, and in particular, they exposed harmful variations
of the media.admob.com and phonegap.com libraries.

google.com
googleapis.com
facebook.com
twitter.com
goo.gl
github.com
linkedin.com
yahoo.com
live.com
paypal.com
youtube.com
microsoft.com
mozilla.org
wikipedia.org
webkit.org
apple.com
amazon.com
blackberry.com
whatwg.org

0% 16% 32% 48% 64% 80%
Percent of Apps

Figure 5: Most common social media URLs in apps.

google-analytics.com
doubleclick.net
gstatic.com
crashlytics.com
fabric.io
media.admob.com
phonegap.com
tools.ietf
appsflyer.com
flurry.com
hockeyapp.net
0% 10% 20% 30% 40%
Percent of Apps
Figure 6: Common ad and other 3rd-party libraries.

4.5 In-Depth App Analysis

In this section we describe an in-depth manual analysis
of 71 digital financial service deployments, including the 29
Android apps with over 500,000 downloads and a random
subset of services with Android or USSD-only deployments.
We collected the information about these services by study-
ing their websites and other public, promotional material.
Many of these services provide only rudimentary information
on their websites, and several had inaccessible or untranslat-
able websites, yet we were still able to compile meaningful
aggregate information on important aspects of their security
practices. A summary of results is shown in Figure 7, and
details are given below. Information for all 71 services was
not always available, as specified in the descriptions below.

Organization Type. 11 were produced by banks or other
financial institutions, 43 were produced or operated by cel-
lular carriers, and 17 were produced by 3rd-party software
companies that are neither affiliated with a bank nor a telco.

SMS Responses. Many USSD-based services provide SMS
messages to their users in response to USSD or app-initiated
queries for current balance, transaction history, or other sim-
ilar financial information. As SMS has known vulnerabili-
ties [23], these SMS responses are a potential source of user’s
financial information for malicious parties. Of the 56 apps
that listed relevant information on their website, 36 of them
returned account information, typically balance and recent
transactions, via SMS. One app even allows balance queries
to be initiated via SMS without any USSD operation. Not
only are SMS messages readable by any person with access
to the phone, they can also potentially be intercepted over
the network [23] or accessed by other apps on the device [12].

Password Reset Information. Of the services analyzed,
there was a wide range of password reset processes and a
diversity of information required to access an account with
a forgotten password or PIN. 34 services provided informa-
tion on password reset procedures in their documentation;
of these, 14 required users to call customer service to ver-
ify their account information and identity. 4 required users
to visit an agent in person in order to recover their account.
The rest either provided in-app or in-browser password reset
options, which typically required the user to answer security
questions or provide personal information listed at the time
of account creation. Adversaries may have access to some of
this information, such as the user’s address or phone num-
ber. 4 apps reset the user’s password to the default of ‘1234’
and then request that they change it—a clear opening for a
malicious individual to gain control of an account.

80 Unknown
% - - -
w
3
£ 20
3
=

0

IDRequired SIM Linked to SMS
Account Responses

Figure 7: A summary of information for the 71 ser-
vices analyzed in depth.

SIM Coupled to Account. Of the 67 mobile money ser-
vices with available information, 35 only allowed the user to
access their account via a device with the user’s SIM card.
This forces malicious actors to have physical access to their
target’s device in order to access the account, yet it also
limits flexibility for legitimate account holders.

ID Requirement. 32 of the services analyzed required the
user to present a government-issued ID to create a mobile
money account. One service required that the user’s finger-
prints be taken in order to open an account, and the remain-
der did not have any such ID requirement, although many
of these require a cellular account, and it is possible that
cellular carriers require ID at the time of account creation.

Account-less Money Transfers. At least 9 of the ser-
vices analyzed permit users to transfer money to individuals
without an account on any mobile banking platform. The
sender generates a single-use voucher code that can be sent
to the recipient via SMS and then exchanged with an agent
for cash. While convenient, these account-less transfers ex-
pose an additional vulnerability—if an adversary accesses a
voucher code, then they will easily be able to steal the funds,
as the identity of the recipient is not verified by the agent.

S. DEVELOPER INTERVIEWS

Our analysis in Section 4 helps characterize the current
state of affairs in DFS application security, but such an anal-
ysis is limited in its ability to identify the root causes of
vulnerabilities. Based on the potential vulnerabilities iden-
tified in this research and prior work, one hypothesis is that
apps are created by unskilled developers through informal,
remiss processes. To improve security practices, researchers
have suggested better training for developers or better ex-
ternal libraries which enable easier implementation of secure
algorithms [16]. Such solutions offer promising tools, but
without understanding the development model, these sug-
gestions may not be able to address the true limitations.

With this goal in mind, we gained an impression of the
existing ecosystem by interviewing 7 current employees of
DFS providers. Of these, 6 interviewees work directly on
writing product code, and the additional interviewee writes
design specifications. The interviewees represent a diverse
set of countries, located primarily within Africa, and work
for several different types of organizations. A summary of
information about the participants is listed in Table 2.

These interviews are not intended to draw comparisons
to a presumed “best” or “Western” approach to application
development, as we have no baseline for comparison to the
developed world, and the specific demands and constraints
are different in emerging markets. Rather, these interviews

App Dev?

Location Org. Org. size downloads
P1 Nigeria telco > 500 50k-100k yes
P2 Nigeria bank > 500 100k—-500k yes
bank,
P3 Kenya software 50-100 5k—-10k yes
P4 Uganda software ~ 100-500 varies w/ yes
partner
P5 Zimbabwe telco > 500 50k—100k yes
P6 Colombia bank > 500 50k-100k no
P7 Colombia bank > 500 50k-100k yes

Table 2: Summary of Interview Participants.

are intended to provide glimpses into the current app de-
velopment ecosystem and to promote topics for further con-
sideration. Our findings from the interviews serve as evi-
dence that the developers are operating within a complex
ecosystem, and many issues are the result of a combination
of unique regional factors, such as government regulations,
bank specifications, or budget limitations.

5.1 Recruitment

To recruit participants, we used our catalog of active de-
ployments, described in Section 4.1, to find 249 unique email
addresses related to mobile money products. We sent an
email to each of these addresses to briefly introduce our re-
search and to invite recipients to complete a short survey.

The primary purpose of the initial survey was to collect
basic demographic information and to request a follow-up
interview. Beyond contributing to our research goals, there
were no incentives for respondents to either complete the
survey or participate in an interview. From the email survey,
we recruited 5 participants. The remaining two interviewees
(P2 and P7) were recruited through contacts of P1 and P6,
respectively. We received approval for this entire process
through our institution’s human subjects review board.

5.1.1 Limitations

Given the limited sample size of interviewees, our research
outcomes are primarily to introduce new considerations and
points of interest. We attempted to reduce bias in recruit-
ment by not mentioning security explicitly before the inter-
view. It is worth noting that all participants work for fairly
large organizations. Similarly, we recruited participants via
email, which biases our results toward organizations whose
apps had actively-monitored email addresses. Accordingly,
our interview results reflect a certain class of developers.

5.2 Interview Process

The interviews, conducted remotely, lasted about 45 min-
utes and began by discussing general information about the
participant’s current organization, job responsibilities, and
work environment. Topics then included the participant’s
education and experience, training offered by the organiza-
tion, and the code development and review processes. The
majority of the interview was spent discussing security, in-
cluding the organization’s policies, the participant’s techni-
cal expertise, and the participant’s mental threat model.

The two primary authors were present for every interview.
One researcher acted as the main interviewer while the other
recorded notes. Each of the authors reviewed all notes and
met to discuss themes and lessons that arose. These themes
are discussed in the following section.

5.3 Interview Results

Every developer we interviewed exhibited basic technical
competence, held a degree in a relevant field, and worked
within an established corporation with standard code re-
view processes and dedicated security teams. We begin this
section by describing these positive findings. Then, we iden-
tify several possible reasons why vulnerabilities still persist
within the app ecosystem, and we propose several concrete
changes to improve security practices.

Table 3 shows a high-level overview of our findings from
the interviews. The results from participants P6 and P7
have been combined because P6 and P7 are both veteran
employees in the same organization. All overlapping infor-
mation was consistent between the two interviewees.

5.3.1 Overall Positive Impressions

As shown in Table 3, every developer we interviewed was
working within a corporate structure with established code
review processes, and all but one developer had extensive
experience and received specific technical training from their
organization. The developers also had strong education back-
grounds, as every developer held a degree in a relevant field.

Five developers indicated that their organizations have
dedicated security experts within separate quality assurance
teams. Similarly, many organizations had strict vetting pro-
cesses as a security measure for external libraries. These
findings demonstrate that security is a priority, and all par-
ticipants, except for P7, stressed the role of security in their
work. P5 reflected, “security is really important. We are
very strict about it. We want to make sure developers make
all of our applications secure.”

Similarly, P6, who is not a developer but a product de-
signer, described security as “the responsibility of the entire
team.” P6 added that the organization makes a concerted
effort to train its employees by offering courses “whenever
there are new ideas in the market.” P1 emphasized the im-
portance of responding to concerns, saying, “once we find a
security issue, everything stops to get it fixed.”

It is important to consider the possibility that participants
were exaggerating their security emphasis in order to present
a professional image during the interviews. We acknowledge
this possibility, yet we maintain that the presence of estab-
lished security teams and policies around external libraries
serve as concrete indicators of an investment in security.

Examining particular security practices, most organiza-
tions we interviewed use standard encryption in their work.
It is easy to make mistakes with custom do-it-yourself en-
cryption, and many vulnerabilities identified by Reaves et
al. [28] can be mitigated by using standard encryption al-
gorithms and libraries. It is promising to see a majority
of organizations adopting standard practices. Many of the
other issues uncovered by Reaves et al. involve insecure con-
nections to servers and are generally caused by improper use
of SSL/TLS. The findings presented in the following section
provide one possible explanation—that these issues may not
be the fault of developers but rather due to strict partner
specifications or governmental regulations.

5.3.2 Possible Causes of Vulnerabilities

During our conversations with the developers, we identi-
fied several possible causes for the lingering security vulner-
abilities found in the current app ecosystem. Those possible
problems are (1) the lack of a complete threat model, (2) the

reliance on external or separate security teams, (3) budget
constraints, (4) the frequent use of Stack Overflow, (5) lim-
ited security education, and (6) stringent requirements from
partner organizations. Some of these “problems” may ex-
hibit both pros and cons toward application security, so they
should not be considered entirely harmful. For example, ex-
ternal security teams may inadvertently diffuse responsibil-
ity away from the actual developers, or if integrated well,
they may provide important security benefits and expertise.

Incomplete threat model. From the academic mindset,
a large focus of the security community centers around pro-
tecting the user. For DFS applications, this involves both
protecting the customer’s money from theft and protect-
ing the customer’s private data. Many of the interviewees
emphasized primarily the need to protect the organization
itself from theft. This is clearly also necessary, but consider-
ing only organizational security and ignoring the customer’s
interests would lead to many of the existing vulnerabilities
that we and others have identified. When asked about the
biggest security risk, for example, P1 responded:

P1: The biggest security risk for the telco is leakage

of revenue. The telco sells data bundles and airtime,

so the major issue with security is when people have

access to URLs that they can use to browse freely.

For example, within my application there is a URL

that is zero-rated, meaning it can be used even if

you don’t have airtime or a data bundle. If someone

gets hold of that URL, they might be able to start

browsing without paying, so that is a major risk.
When asked about specific protections for customers, P1
admitted that they sent a survey to users, and there “has
been no concern about security.” In fact, users expressed
discontent over having to constantly log in to their accounts.
In response, P1’s company now links a user’s SIM card and
device to their account, so the users no longer need to log
in. Asked about the possibility of a customer losing their
phone or having it stolen, P1 said:

P1: That concern doesn’t arise at all because once

your phone is stolen, you can go through a process

of blocking and getting your SIM back...You can

simply walk into our experience centers and get back

on board. We will retrieve your number back in a

very simple process.

Similarly, P3 agreed that the largest concerns are attacks
on the company over the network. P3 was most worried
about DDoS attacks because “when that happens we will be
offline. For a financial institution, that is bad for business.”
When asked about the biggest security risks, P3 said:

P3: There are two security risks and both are human.
One is an ex-employee, and second is the customer.
We consider a breach of a customer’s account as a
security issue, and we also consider remote access to
unauthorized system data as a security risk, both to
the customer and the employee. For myself, I have
almost unlimited access to all mobile application de-
velopment systems. . .I take part in API discussions
and system architecture for a new system... With
my experience and training, I would say if I left the
company today, there are 900 security breaches, and
I would be able to breach one of them.

P7, who displayed the most limited knowledge of security,
admitted that the only sensitive info handled by the bank
is the customer’s “username and password.” P7 admitted

P1 P2 P3 P4 P5 P6/7
Dev. Experience (yrs) 7 8 8 12 1 2
Dev. Education BS in Comp. BS in Chem. BS in Geo. Eng. BS in CS BS in CS Engineer
Eng. Eng.
. . . SO, official
Top 2 coding resources SO, GitHub SO, org. docs SO, GitHub docs SO, coworkers blogs, books
network
Threat model focus network (MITM) network (DDoS) user fraud network, user user fraud
Org. Type telco bank bank, software software telco bank
Partnerships none unknown banks banks none telco
Org. Technical Training? yes yes yes yes no yes
Org. Code Review outsourced internal team internal team internal team SonarQube internal team
Org. Security Experts outsourced internal team internal team developer internal team internal team
mandatory
Org. Security Training? offered by offered by cert. from Kenya none unknown internal
contractor contractor Bankers Assoc. C
training
External Libraries? ves yes, with org. yes, 7but dev. yes, with org. yes no, agal.nst
approval won’t use them approval org. policy
Encryption Methods custom standard standard standard standard standard

Table 3: Summary of high-level results from interview participants.

In the third row, SO refers to Stack

Overflow. SonarQube is an open platform for code quality management available from sonarqube.org.

not knowing the most important security risks because “that
part is another area, separate from mine.”

Others, however, focused on attacks targeting users rather
than attacks on the company network. P4 in particular held
the stance that human fraud is the most volatile factor:

P4: In most of the markets we're in, there isn’t go-
ing to be a DDoS or packet sniffing, or any of the
advanced stuff you see in the West. Here it is mostly
users being manipulated into divulging key informa-
tion. I don’t lose sleep over somebody breaking into
a system. It’s more someone is going to give away
this, or give away that, or disable something. It’s just
different in emerging markets. . . the weakest point is
always the human factor. .. It hasn’t happened to us,
but in other banks the IT manager has just gone
rogue and given up access to all the PINs. Here, it’s
not technical. The weakest point is always people.

FExternal Security Teams. Every interviewee, except
P4, noted that their organization has a dedicated security
team separate from the primary development team. This
is not inherently problematic, but as with P7 who did not
have any model of security risks, relegating responsibility
away from the developers may limit security features imple-
mented in applications. Most security teams were distinct
groups within the same organization, but in one case (P1),
the telco uses an external contractor from China for both
quality assurance and security specifications.

Budget Constraints. We found that organizations strug-
gled with a trade-off between security and budget. With
limited time or money, it may be more pertinent to imple-
ment a feature-rich application than a secure application,
and this is especially true in emerging markets where com-
panies’ initial capital may be limited and new competitors
move forward rapidly in the market. In particular, P6 said:

P6: The main risk is that the budget is not enough.
You need enough money for the project and to pay
the developers. If the original project plan did not
include all necessary features, then you have to pay

more to the developers. Then you have to compro-
mise to stay on schedule and make the launch date.

Stack Overflow." We asked the developers to name the
two resources they find most valuable while coding, and we
gave as examples “books, coworkers, official documentation
(such as Android docs), online forums (such as Stack Over-
flow), blogs, or other.” All but one developer chose Stack
Overflow, and they shared the consensus of using Stack
Overflow in “almost all projects” (P1). Prior research has
shown a correlation between the use of Stack Overflow and
producing less secure code [8].

Education. As shown in Table 3, our interviewees had
anywhere from 1-12 years of software development experi-
ence, and although all had a university degree, most par-
ticipants stated that most of their programming skills were
self-taught. For example, P2 admitted that schools “will
only teach you the basics. Programming is about what you
learn every day to get a job done. As a programmer, you
just have to keep learning.” P4 expressed similar sentiments
about their own college experience:

P4: The college experience wasn’t really useful or
helpful. When I got into actual employment, there
was no moment where I said, ‘ah thank god I learned
that in college.’

Despite agreement among the interviewees about inade-
quate preparation for industrial software engineering, the
prevalence of college degrees seems to indicate that the de-
velopers are well-educated and willing to learn the requisite
skills to be successful. Accordingly, all but one participant,
P5, said that their organization offers structured technical
training for both new and veteran developers. Requirements
for security experts, on the other hand, were much less clear
and consistent, and only three participants (P3, P6, and P7)
were aware of mandatory security training or requirements
for security experts at their organizations.

Partner Requirements and Regulations. Both good
and bad, the blame for certain vulnerabilities may not al-

http:/ /stackoverflow.com/

ways lie with the developer; rather, local government regula-
tions or partner specifications may dictate certain insecure
policies. During our interviews, all developers mentioned
that application security decisions are made during the ini-
tial design phase, before implementation, and many times
the developers are just matching specifications written by
security teams or external partners. When asked about the
importance of integrating security practices, P4 responded:
P4: For us it’s slightly complicated because a lot of
the time we are at the mercy of our partner. Since we
partner with a lot of banks, we will be at the mercy of
their security team. We have our own ideas on how
to secure our applications, but the level of security
we have control over is only at the device level. Once
an application communicates with the outside world,
they can tell us, for example, you have to use a VPN
or it must connect to these specific servers. . . for bet-
ter or for worse a lot of the time our security review
is us submitting required documentation to the bank
audit team and meeting their spec.
Elaborating further, P4 claimed:
P4: One of our strengths is biometry, but some bank-
ing partners will decide that they don’t want to in-
vest in the additional hardware required to do biom-
etry. They are are fine with their single PINs.
In these scenarios, it is critical to examine the entire ecosys-
tem to understand underlying issues, as competent develop-
ers may be forced to compromise their systems. This por-
trays developers in a better light, but the bad news is that
even the best software teams and the best companies may
be powerless to the prohibitive red tape, as P4 explained:
P4: You will find a market where a gang of criminals
exposed a particular human hack and made off with
2 million dollars. Then there will be this uproar and
the government will just make a piece of regulation
in reaction to that. So you will find this weird piece
of regulation in this market that requires customers
to go to the customer service location and present 7
forms of ID and their mother’s DNA. .. That’s emerg-
ing markets for you. .. We did one crazy one in West
Africa where they didn’t use any [encryption]. There
again we are just at the mercy of the partner... We
made them sign documents seven ways to Sunday
because we were absolutely worried about [security].
What you’ll find in these markets is that you have an
IT person, and you are forced to work to their level
of expertise.

5.3.3 Recommendations

Given these case-by-case insights, we propose several con-
crete and feasible steps forward. Our main suggestions re-
volve around external libraries, consistent security qualifica-
tions, and better resources to supplement Stack Overflow.

FExternal Libraries. A tempting solution to rampant se-
curity vulnerabilities is to propose better external libraries,
which will abstract away implementation details and inte-
grate seamless encryption. Though these libraries are ir-
refutably useful, there are two problems with this catch-all
solution. First is that many security concerns are human-
related and depend heavily on context, such as proper login
authentication or password reset procedures. Second, even
though 5 out of our 6 developers were officially allowed to
use external libraries, most developers were skeptical.

Although P3’s organization does not explicitly forbid the
use of external libraries, P3 said:

P3: I avoid [external libraries] unless necessary, and
I have never found a case where anything is neces-
sary. In i0S, Android, Windows, and Blackberry, the
native SDKs come with almost anything you need.
I don’t believe there is anything that’s perfect and
free. If you include someone’s library and it is very
good, you have to ask yourself why is he giving it out
for free?

P2 and P4 both work in organizations which require any
new external libraries to be approved. This adds a layer of
consistency, but it places restrictions on the developers.

Security Qualifications. Each organization we studied
had clear security experts, but for the most part, the devel-
opers had no knowledge of the actual qualifications of these
experts. P6’s organization holds mandatory training ses-
sions for the security experts, and most interestingly, P3’s
organization requires the security team to have a national
certification from the Kenya Bankers Association. Such a
certification is not available in every country, but having a
national or regional structure to provide security training
and certifications could help standardize the ecosystem.

Supplemental Resources. We learned that developers
are largely thinking about security issues. P6 in particu-
lar repeatedly asked the interviewers for suggestions on best
practices to reset a user passwords. This poses an impor-
tant question: when developers or product designers want
to learn more about standard options for security measures,
what resources should they use? Computer security is an art
of balancing risk, so no single solution can apply to every sit-
uation. A set of guidelines, however, for financial services in
the developing world could be both well-received and ben-
eficial. Stack Overflow provides little consistency or stan-
dardization for best practices. Either more careful curation
of Stack Overflow content or dedicated resource materials
could provide a better starting point for developers.

6. DISCUSSION

Mobile money is rapidly expanding and offers great po-
tential for global financial inclusion. In this section, we step
back to discuss related work, outline the exposed security
challenges, and propose future suggestions.

Related Work. Mobile security has been the subject of a
relatively large body of work in the past decade. Of particu-
lar relevance to our work, Fahl et al. [16] interview develop-
ers about SSL/TLS mistakes and find that many issues stem
from Android platform limitations rather than developer
negligence. Other research has generated strategies to help
Android developers [20], and several studies have measured
the prevalence and danger of SSL mistakes in apps [15,22].
On security in the developing world, Ben-David et al. [9]
encourage researchers to devote more focus to the unique
factors in the developing world. There has since been work
in the areas of fraud and user authentication [25,30], mobile
applications [28], and end-to-end security [24,26].

Security Challenges. Looking in-depth at our app analy-
sis, we believe the most alarming threats include SMS spoof-
ing and external libraries, which track users within a con-
text where privacy perceptions are not well understood. Of
limited yet realistic concern are SMS interceptions on the
network, server attacks, MITM attacks, and unauthorized

access from stolen devices. Attacks from malicious external
apps and fake accounts are not high-priority concerns.

In our interviews we found that vulnerabilities may arise
due to a combination of unique regional factors. The servers
and specifications may be managed by multiple stakeholders
with different requirements, resulting in restricted coverage
of the threat model. Some developers also had limited threat
models and only considered protecting the organization from
fraud rather than protecting the customer. Developers who
perceive human fraud as the greatest risk may not prioritize
vulnerabilities which require technical expertise to exploit.
We also believe that some errors stem from inadequate re-
sources, such as Stack Overflow, which was the most widely-
used resource and has been shown to foster insecure code.

Future Work. Reaves et al. [28] identified serious security
flaws in a suite of mobile money apps, but many of these
issues—SSL/TLS misconfigurations, information leakage on
outdated Android versions, by known best practices. Com-
petent organizational structures are in place, so additional
reference sources in the form of guidelines for DF'S products
in the developing world or conscientious curation of Stack
Overflow forums could be quickly integrated into developer
workflows. Security certifications at a national level would
also provide a useful validation for dedicated security teams
within organizations.

We have uncovered some future challenges that may prove
difficult to navigate. Institutional factors, such as disagree-
ment among partner organizations or government and bank
regulations, are hurdles that require more than better app
development. One achievable objective is to pursue further
research on a deployment-specific level of detail, such as
password reset procedures, account-less money transfers, ID
requirements, and other context-dependent issues.

7. CONCLUSION

We present a systematic threat model for the challenges
associated with mobile money deployments in the developing
world, and we use this threat model to guide a security anal-
ysis of 197 Android apps and 7 semi-structured interviews
with developers. We argue that the threats addressed in
prior work are not necessarily the most dire; rather, human-
oriented fraud and restrictions from partner organizations
present greater, more realistic challenges.

Acknowledgments

The University of Washington DFS Research Group is sup-
ported by a grant from the Bill & Melinda Gates Foundation.

8. REFERENCES

[1] Android Developers Dashboards. URL:
https://developer.android.com/about/dashboards/index.html.

[2] Apktool: A tool for reverse engineering Android apk files.
URL: http://ibotpeaches.github.io/Apktool/.

[3] StatCounter Global Stats. URL: http://gs.statcounter.com.

[4] World Bank. 2016. World Development Report 2016:
Digital Dividends. Washington, DC: World Bank.

[5] Telco 2.0, Security Breach at M-PESA: Telco 2.0 Crash
Investigation, Feb. 2010. URL: http://www.telco2.net/blog/
2010/02/security_breach_at_mpesa_telco.html.

[6] Kenya to switch off ‘fake’ mobile phones. BBC' News, Sept.
2012. URL: www.bbc.com/news/technology-19731514.
Safaricom Official Blog, Dealing with fraudsters, May 2015.
URL: www.safaricom.co.ke/blog/dealing-with-fraudsters/.

[8] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and
C. Stransky. You Get Where You’re Looking For: The

[7

Impact Of Information Sources on Code Security. In IEEE
Symposium on Security and Privacy, 2016.

9] Y. Ben-David, S. Hasan, J. Pal, M. Vallentin, S. Panjwani,
P. Gutheim, J. Chen, and E. A. Brewer. Computing
Security in the Developing World: A Case for
Multidisciplinary Research. NSDR, 2011.

[10] J. Chen, M. Paik, and K. McCabe. Exploring Internet
Security Perceptions and Practices in Urban Ghana.
SOUPS, 2014.

[11] K. Chen, X. Wang, Y. Chen, P. Wang, Y. Lee, X. Wang,
B. Ma, A. Wang, Y. Zhang, and W. Zou. Following Devil’s
Footprints: Cross-Platform Analysis of Potentially Harmful
Libraries on Android and iOS. In IEEE Symposium on
Security and Privacy, 2016.

[12] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner.
Analyzing Inter-application Communication in Android.
MobiSys, 2011.

[13] C. Cobb, S. Sudar, N. Reiter, R. Anderson, F. Roesner,
and T. Kohno. Computer Security for Data Collection
Technologies. ICTD, 2016.

[14] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,

P. McDaniel, and A. N. Sheth. TaintDroid: An
Information-flow Tracking System for Realtime Privacy
Monitoring on Smartphones. OSDI, 2010.

[15] S. Fahl, M. Harbach, T. Muders, L. Baumg#rtner,

B. Freisleben, and M. Smith. Why Eve and Mallory Love
Android: An Analysis of Android SSL (in)Security. CCS,
2012.

[16] S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith.
Rethinking SSL Development in an Appified World. CCS,
2013.

[17] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner.
Android Permissions Demystified. CCS, 2011.

[18] GSMA. Mobile Money Deployment Tracker. URL:
http://www.gsma.com/mobilefordevelopment/m4d-tracker/
mobile-money-deployment-tracker.

[19] Joseck Luminzu Mudiri. Fraud in Mobile Financial
Services. Technical report, MicroSave, Dec. 2012.

[20] M. Linares-Vdsquez. Supporting Evolution and
Maintenance of Android Apps. ICSE, 2014.

[21] K. McKee, M. Kaffenberger, and J. M. Zimmerman. Doing
Digital Finance Right: The Case for Stronger Mitigation of
Customer Risks. Technical Report 103, June 2015.

[22] L. Onwuzurike and E. De Cristofaro. Danger is My Middle
Name: Experimenting with SSL Vulnerabilities in Android
Apps. WiSec, 2015.

[23] M. Paik. Stragglers of the Herd Get Eaten: Security
Concerns for GSM Mobile Banking Applications.
HotMobile, 2010.

[24] S. Panjwani. Towards End-to-end Security in Branchless
Banking. HotMobile, 2011.

[25] S. Panjwani and E. Cutrell. Usably Secure, Low-cost
Authentication for Mobile Banking. SOUPS, 2010.

[26] S. Panjwani, M. Ghosh, P. Kumaraguru, and S. V. Singh.
The Paper Slip Should Be There!: Perceptions of
Transaction Receipts in Branchless Banking. MobileHCI,
2013.

[27] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner. AdDroid:
Privilege Separation for Applications and Advertisers in
Android. ASIACCS, 2012.

[28] B. Reaves, N. Scaife, A. Bates, P. Traynor, and K. R. B.
Butler. Mo(bile) Money, Mo(bile) Problems: Analysis of
Branchless Banking Applications in the Developing World.
In USENIX Security, 2015.

[29] B. Reaves, N. Scaife, D. Tian, L. Blue, P. Traynor, and
K. R. B. Butler. Sending out an SMS: Characterizing the
Security of the SMS Ecosystem with Public Gateways. In
IEEE Symposium on Security and Privacy, 2016.

[30] A. Sharma, L. Subramanian, and D. Shasha. Secure
Branchless Banking. NSDR, 2009.

