
This paper is included in the Proceedings of the
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Open access to the Proceedings of the
28th USENIX Security Symposium

is sponsored by USENIX.

Secure Multi-User Content Sharing for
Augmented Reality Applications

Kimberly Ruth, Tadayoshi Kohno, and Franziska Roesner, University of Washington

https://www.usenix.org/conference/usenixsecurity19/presentation/ruth

https://www.usenix.org/conference/usenixsecurity19/presentation/ruth

Secure Multi-User Content Sharing for Augmented Reality Applications

Kimberly Ruth
kcr32@cs.washington.edu

Tadayoshi Kohno
yoshi@cs.washington.edu

Franziska Roesner
franzi@cs.washington.edu

Paul G. Allen School of Computer Science & Engineering, University of Washington

https://ar-sec.cs.washington.edu/

Abstract
Augmented reality (AR), which overlays virtual content on
top of the user’s perception of the real world, has now be-
gun to enter the consumer market. Besides smartphone plat-
forms, early-stage head-mounted displays such as the Mi-
crosoft HoloLens are under active development. Many com-
pelling uses of these technologies are multi-user: e.g., in-
person collaborative tools, multiplayer gaming, and telep-
resence. While prior work on AR security and privacy has
studied potential risks from AR applications, new risks will
also arise among multiple human users. In this work, we ex-
plore the challenges that arise in designing secure and private
content sharing for multi-user AR. We analyze representative
application case studies and systematize design goals for se-
curity and functionality that a multi-user AR platform should
support. We design an AR content sharing control module
that achieves these goals and build a prototype implementa-
tion (ShareAR) for the HoloLens. This work builds founda-
tions for secure and private multi-user AR interactions.

1 Introduction
Augmented reality (AR) technologies, which overlay dig-
itally generated content on a user’s view of the physical
world, are now becoming commercially available. AR
smartphone applications like Pokemon Go and Snapchat,
as well as smartphone-based AR platforms from Apple [5],
Facebook [6], and Google [4], are already available to bil-
lions of consumers. More sophisticated AR headsets are also
available in developer or beta editions from companies like
Magic Leap [37], Meta [41], and Microsoft [24]. The AR
market is growing rapidly, with a market value projected to
reach $90 billion by 2022 [15].

The power that AR technologies have to shape users’ per-
ceptions of reality — and integrate virtual objects with the
physical world — also brings security and privacy risks and
challenges. It is important to address these risks early, while
AR is still under active development, to achieve more robust
security and privacy than would be possible once systemic
issues have become entrenched in mainstream technologies.

The computer security and privacy community has already
taken steps towards identifying and mitigating potential risks
from malicious or buggy AR apps. These efforts — e.g., lim-
iting untrusted apps’ access to sensor data [28, 49, 54] or re-
stricting the virtual content apps can display [32, 34] — are
reminiscent of recent work on access control for untrusted
apps on other platforms, such as smartphones [16, 53]. De-
spite this valuable initial progress, we observe a critical gap
in prior work on security and privacy for AR: though past
efforts are valuable for protecting individual users from un-
trusted applications, prior work has not considered how to
address potentially undesirable interactions between multi-
ple human users of an AR app or ecosystem.

The need to consider security for multi-user AR. Despite
this gap in prior work, we observe that many compelling use
cases for AR will involve multiple users, each with their own
AR device, who may be physically co-located or collaborat-
ing remotely and who may be interacting with shared vir-
tual objects: for instance, in-person collaborative tools [63],
multi-player gaming [3], and telepresence [18]. As one con-
crete example already available to AR users, Ubiquity6 has
released a beta version of its smartphone platform in which
all users can view and interact with all AR content within the
app [67], as shown in Figure 1.

In these contexts, the potential security, privacy, and safety
risks for AR users come not only from the apps on their
own devices but also from other users. For example, one
user of a shared AR app might accidentally or intentionally
spam other users with annoying or even disturbing virtual
objects, or manipulate another person’s virtual object (e.g.,
artwork) without permission. Indeed, even though multi-user
AR technologies are not yet ubiquitous in the consumer mar-
ket, precursors of such issues have already begun to emerge
in the wild and in research settings today. In AR specifically,
for example, there have been reports of “vandalism” of AR
art in Snapchat [38], and a recent study found that pairs of
AR users often positioned virtual objects in each other’s per-
sonal space [35]. Similar findings have been made in virtual
reality (VR), where users have blocked each other’s vision

USENIX Association 28th USENIX Security Symposium 141

https://ar-sec.cs.washington.edu/

Figure 1: Sample screenshots from Ubiquity6 multi-user applica-
tion (taken from [67]). Users can, for instance feed a virtual cat
(left) or tend a virtual garden (right).

with virtual objects [66] and invaded each other’s personal
space [1]. In earlier work on digital tabletop displays, re-
searchers observed conflicts between users closing or steal-
ing each others’ documents [44]. As a final example, Ap-
ple’s AirDrop scheme for sharing files between physically
co-located Apple devices has been misused to send inappro-
priate content to strangers in public spaces [11].

Thus, we can and should expect conflicts and tensions to
arise between multiple AR users, which raises the critical
question: how should AR platform and app designers handle
these issues? Existing AR platforms provide limited or no
support to app developers on this front. For example, though
HoloLens supports running an app shared between multiple
device users, it surfaces only basic cross-device messaging
features, providing no framework for developers to reason
about or support complex multi-user interactions.

This work: Sharing control for multi-user AR. In this
work, we thus address the challenge of providing secure
and private content sharing capabilities for multi-user aug-
mented reality applications. Unlike prior AR security work
that focused on protecting users from untrusted apps, we
aim to limit undesirable interactions between mutually dis-
trusting human users — similar to how traditional file system
permissions attempt to separate mutually distrusting human
users from each other. By addressing this issue before multi-
user AR becomes widespread, we aim to inform the design of
future AR systems, thereby preventing such multi-user con-
cerns from manifesting broadly.

In our exploration of this space, however, we find that con-
trolled sharing for AR content raises unique challenges not
present in traditional settings such as file systems or shared
online documents. The root cause of this complexity is AR’s
integration with the physical world. Because people share
the same physical world, they may have certain expecta-
tions about how AR content is shared. Indeed, prior work
has found that users often expect co-located users to see the

same virtual content [35]. For example, a user might want
to have control of their personal physical space, not allow-
ing another user to place too many virtual objects near them.
Fulfilling this request requires that either the second user is
restricted in augmenting his or her own view of the world, or
that the two users see different things. Diverging views of the
world can violate expectations, however: consider watching
or interacting with an AR object that only you can see while
another AR user unknowingly steps into the space between
you and your object.

AR’s integration with the physical world further compli-
cates many access control design decisions. Consider the
seemingly simple notion of Alice sharing an AR object with
Bob: for instance, giving him read access to a piece of vir-
tual artwork. When this object is shared, does Bob see the
artwork in the same place as Alice (e.g., on a particular wall),
or does Bob see his own instance of the object in a different
place? The answer may depend on the semantics of the app
and whether Alice and Bob are physically co-located, and
the answer interacts with many other design choices.

In our work, we thus explore a set of multi-user AR case
study apps that represent different points in the possible de-
sign space (co-located and remote users, opt-in versus opt-
out sharing) to surface functionality and security goals for an
AR sharing control module. We then present the design of
such a module, which we envision as an app-level library or
OS interface that can be leveraged by AR application devel-
opers. This module supports app developers in (1) allowing
users to share AR content with other (co-located or remote)
users, (2) allowing users to control both inbound and out-
bound AR content, while (3) addressing fundamental chal-
lenges raised by AR’s integration with the physical world.

One key challenge is to define and manage different
ways that AR content might be mapped into the physical
world — we do so by supporting both location-coupled ob-
jects (which all users see in the same physical place) and
location-decoupled objects (for which users see their own
copies in separate locations), and by managing the resulting
impact of these types of objects on sharing and access control
functionality. Another key challenge is to address potential
discontinuities in user expectations around private content in
a shared physical world — we do so by introducing “ghost”
objects that allow users to share with other AR users that
they are interacting with a virtual object without sharing sen-
sitive details about that object. Finally, a third key challenge
is to respect users’ possible sense of ownership of physical
space (e.g., personal space) — to that end, our design sup-
ports policies for how to handle AR objects that are within a
protected region (e.g., making objects closer to a user more
transparent to that user). Through our exploration, we find
that no single sharing control model will work for all apps,
but that our proposed module can provide key features to
support app developers in creating multi-user AR apps that
meet users’ expectations.

142 28th USENIX Security Symposium USENIX Association

Contributions. In summary, our contributions include:
1. We are the first to rigorously explore the design space

for secure and private AR content sharing between
users. Through an exploration of multi-user AR case
study apps, we identify (in Section 2) key design goals,
challenges, and features that app developers require to
support secure and private multi-user AR experiences.

2. Building on our design space exploration (Section 2),
we present the design (in Section 4) of a multi-user AR
sharing control module. Our design addresses key chal-
lenges and enables app developers to meet our design
goals: supporting users in controlling how they share
AR content with others and how AR content is shared
with them, while taking into account the ways in which
AR content might integrate with the physical world.

3. We provide a concrete prototype implementation
(ShareAR, in Section 5) and evaluation (in Section 6),
iteratively refining our design and demonstrating its fea-
sibility in practice. Our source code will be made avail-
able at the project website.1

This work lays a foundation for future secure and private
multi-user AR apps. Mitigating undesirable interactions be-
tween users can facilitate user adoption of AR and help the
technology reach its full potential.

2 Problem Formulation and Design Goals
We begin by formulating, for the first time, the problem
space and goals for secure and private multi-user AR con-
tent sharing. To do so systematically, we consider four case
study apps (Section 2.1) that we selected to explore unique
points in the multi-user AR design space and that we en-
visioned might exercise a broad range of functionality and
security needs. From these case studies, we then derive our
security and functionality goals (Sections 2.2 and 2.3).

In exploring possible apps, we observe that the key aspect
of AR that differentiates it from previous technologies is its
tight physical-world integration: virtual content appears to
the user to be situated in 3D space among physical objects
(e.g., the examples in Figure 1). Thus, one key axis is (1) co-
location: are the users sharing virtual content co-located or
not? A second key axis is (2) opt-in versus opt-out sharing:
is sharing a deliberate opt-in action between specific people
(as the HoloLens developer guidelines prioritize [43]) or are
virtual objects public by default, requiring a deliberate opt-
out (as the Meta developer guidelines advocate [40])? The
example case studies we highlight explore these dimensions.

2.1 Case Study Applications

Paintball: Co-located, opt-in. In this app, users in the
same physical space can play a game of paintball with virtual
paint. All users can see the game objects (weapons, paint,
etc.). Users may also have a dashboard where they can see

1arsharing.cs.washington.edu or arsharingtoolkit.com

the game status. This type of AR multiplayer gaming is al-
ready emerging in smartphone apps [20].

Multi-Team Whiteboards: Not (necessarily) co-located,
opt-in. We envision a collaborative AR whiteboard app in
which a user, possibly in a co-located group, may choose to
share a whiteboard with other users who may be in the same
or different physical locations. Although each co-located
group of users sees the same whiteboard in the same loca-
tion, different groups may see the whiteboard instantiated in
different locations; furthermore, a user in a group may split
off an individual copy of the whiteboard in order to leave the
room and still collaborate from another remote space. The
contents of all users’ copies are synchronized in real-time.
Since different whiteboards may have different levels of sen-
sitivity, access control must be at least at whiteboard-level
granularity. Unlike in Paintball, where a shared game state
is core to app function, users of this app may encounter users
with whom they don’t want to share a sensitive whiteboard.
This case study, also, is grounded in existing work: a pend-
ing patent application by Apple [29] describes a GUI for AR
document editing, though it does not mention access control.

Community Art: Co-located, opt-out. We now consider
an example in which co-located users automatically see
each other’s objects by default. We consider a virtual art
app, where users can create and view sculptures, free-drawn
markup, and other artistic artifacts made by other, potentially
unknown AR users in the same physical (and virtual) space.
Variants of Community Art might be used to decorate for a
celebration so that guests or passersby will see the content, or
to place advertisements outside one’s shop. Though we con-
sider Community Art as an example of a public-by-default
app, some use cases may necessitate more fine-grained ac-
cess control. For instance, artists may choose to keep their art
private while constructing it or allow the public to view but
not edit their sculptures. This case study is similar to Ubiq-
uity6’s smartphone app [67], in which all content is public.

Soccer Arena: Not co-located, opt-out. Finally, we con-
sider an app that lets the user watch a virtual replica — e.g.,
on the user’s living room table — of the soccer game that
it is currently broadcasting. By default, all users of this app
see all aspects of the playing field, commentator annotations,
and ads. Some users may watch the game together in the
same physical space, while others may be in separate phys-
ical spaces. While using the app, a user may wish to block
a distracting ad or turn off annotations. The ability to form
AR reconstructions of soccer games from monocular video
footage, demonstrated in [51], shows that this app is within
reach of today’s technology. We find that Soccer Arena does
not surface new security, privacy, or functionality require-
ments not covered by the other case studies. In particular,
it raises the same spam-related concerns as Community Art
does and the same non-colocation challenges as Multi-Team
Whiteboards does. However, we include it for completeness.

USENIX Association 28th USENIX Security Symposium 143

arsharing.cs.washington.edu
arsharingtoolkit.com

2.2 Functionality Goals

From the above case studies, we now derive a set of func-
tionality design goals for multi-user AR apps and platforms.
Any sharing control solution must coexist with these func-
tionality goals — while one could trivially meet the security
and privacy goals outlined in the next section by allowing no
shared content, supporting sharing functionality is critical to
the success of emerging multi-user apps.

• Support physically-situated sharing. For both Paint-
ball and Community Art, physically co-located users
will want to see the same virtual objects. The multi-
user AR platform must support a way of sharing virtual
state, and a mapping between virtual objects and the
physical world, among the collaborating users.

• Support physically-decoupled sharing. Multi-Team
Whiteboards requires that AR content be synchronized
for each person’s copy, regardless of the users’ relative
location — when they’re in the same room, or adjacent
rooms, or halfway across the world. Thus, the platform
must support sharing virtual content decoupled from the
physical world as well.

• Support real-time sharing. Users of Paintball will ex-
pect for their interactions with other players to occur
in real time. Real-time state changes are also desirable
for the other case studies. Thus, the platform must sup-
port low latency updates of shared state among multi-
ple users, and any sharing control solution should not
impose an undue performance burden. (Note that real-
time performance also confers a security benefit, since
access control changes can propagate quickly.)

2.3 Security Goals

A trivial solution that provides all of the above functionality
would make all AR content public by default. However, in-
teraction between multiple users may not always be positive.
For example, a malicious or careless user may attempt to:

1. Share unwanted or undesirable AR content with an-
other user. For example, in Multi-Team Whiteboards,
a user may plaster a wall with offensive messages, or in
Community Art, violate another user’s personal space
by attaching virtual objects to them as a practical joke.
Such behavior has already manifested in shared VR set-
tings [1, 66].

2. See private AR content belonging to another user. For
example, in Multi-Team Whiteboards, a user may at-
tempt to read another user’s private whiteboard.

3. Perform unwanted manipulations on AR content cre-
ated by or belonging to another user. For example,
in Community Art or Multi-Team Whiteboards, a user
may delete or vandalize another user’s virtual creations.
Such behavior has already appeared in the wild, with
vandalism of AR art in Snapchat [38].

In response to such multi-user threats, we develop the fol-
lowing security and privacy goals for an AR sharing module.

Control of outbound content. Sharing of AR content in-
volves two parties: the originator of the content and the re-
cipient. We decompose our security goals along this dimen-
sion, beginning with control of outbound content, i.e., man-
aging the permissions of other users to access shared content.

Three canonical access control rights are “read,” “write,”
and “execute.” Extending “read” and “write” to the AR do-
main (and deferring “execute” to Section 7):

• Support granting/revoking per-user permissions.
The multi-user AR platform should support setting edit
and view permissions for different users. A user of
Paintball may wish to share a game session only among
a specified friend group instead of allowing any nearby
user to join, and may wish to retain full control of game
administration even among the set of players.

• Support granting/revoking per-object permissions.
A user of Community Art may wish to leave one piece of
art publicly visible while working privately on another.
Thus, regulating permissions at the granularity of the
app is not sufficient to cover all use cases; object-level
permissions must be supported as well.

The consequence of the above goals is that users in the
same physical space may not share the same view of the vir-
tual space. This is in sharp contrast to current technologies,
where the physical presence of a device — e.g., a smartphone
or a television set — enables the user of that device both
(1) to signal to others that they are busy with that device,
and (2) to establish a dedicated spatial region upon which
their use of the device depends. The physicality of the de-
vice, then, serves as a scaffold around which interpersonal
norms have developed. For instance, a person might avoid
standing in front of a television set when a user is watching
it, and might refrain from blocking the line of sight from a
user to the smartphone they are holding.

AR content has no such physicality. Consider, for in-
stance, Multi-Team Whiteboards: as thus far stated, a user
looking at or interacting with a private whiteboard will ap-
pear to a nearby user as staring into or manipulating empty
space. There is no mechanism by which the user can ex-
ercise agency over their working space in the presence of
other users, and no mechanism by which other users pass-
ing by can determine whether the object is five feet away
from its owner or up against a more distant wall. As a result,
one user may inadvertently stand in front of content that a
second user is interacting with. Further adding to this is-
sue, prior work has also shown that people can be uncom-
fortable with the presence of AR users due to not knowing
what the AR user is doing [14,35], and private content causes
this rift even between users of the same AR platform. The
Meta developer guidelines [40] thus recommend that devel-
opers build public-by-default content in accordance with hu-
man intuition about a shared physical world. Indeed, novice
users in the same physical space may expect to also see the
same virtual content [35]. It is possible that social behaviors

144 28th USENIX Security Symposium USENIX Association

will adapt to this physicality disconnect over time, particu-
larly around the current social discomfort of bystanders. But
although social norms may change, and although mitigating
these issues for bystanders — non-AR users, or AR users of a
different and non-compatible platform — is difficult and be-
yond the scope of this work, we still seek to address this
physical-world disconnect at least in the near term for multi-
ple AR users of compatible platforms. Specifically, we wish
to achieve the above content privacy goals while at least par-
tially supporting a shared-world physical intuition:

• Support physically intuitive access control. An app
may wish to signal to a nearby user that another user is
(for example) drawing on a whiteboard, without reveal-
ing the content being drawn.

Control of inbound content. We next consider security
properties from the perspective of the recipients of shared
content. Since shared content can have serious implications
for the receiver, such as spam that obscures important real-
world information [34], we derive the following goals:

• Support user control of incoming virtual content.
For instance, users of Community Art may wish to fil-
ter content to only that which is age-appropriate or that
does not contain foul language.

• Support user control of owned physical space. In the
case of Community Art, a user may not want arbitrary
other users to attach content to their heads without con-
sent, a homeowner may wish to prevent house guests
from placing virtual content inside private rooms, and
the keepers of a public monument may not want the
monument to be vandalized with virtual graffiti. We
note that users may want control over their physical
space even when they cannot see the object in question:
for instance, an app may wish to prevent a virtual “kick
me” sign from being attached to a user’s back such that
the user cannot see and cannot control the sign. We con-
sider the question of determining who controls a partic-
ular physical space to be out of scope for the design we
present in Section 4 (see Section 4.4 for further discus-
sion), and instead focus on enforcing owned physical
space; however, we urge future work to also address
this complementary issue.

2.4 Supporting Flexibility

Stepping back, in defining the above functionality and secu-
rity goals, we observe that not all multi-user AR apps will
have the same needs. For example, AR content that is shared
with all users by default is suitable for some apps (e.g., Com-
munity Art) but not others (e.g., Multi-Team Whiteboards).
Likewise, not all security and privacy goals are relevant in all
cases: for instance, enforcing personal space for shared AR
content may conflict with the functionality needs of Paint-
ball, which requires that virtual paint stick to players upon
a hit. Even in an app that is otherwise simple from a shar-
ing control perspective, user needs may warrant a degree of

added sharing control complexity: for instance, an AR assis-
tive technology object that transcribes spoken words for deaf
users may be exempt from the app’s general rules for the en-
forcement of owned physical space so that it always remains
visible to the deaf user who needs it.

Because the right sharing control model is app-specific,
AR app developers will need the ability to implement multi-
user features with their chosen model. To that end, we iden-
tify the need for a flexible AR sharing control module that
can be leveraged by app developers. We envision this mod-
ule as either an app-level library or an OS interface (i.e., set
of APIs) that provides sharing control features. The advan-
tage of an app-level library is that it does not require explicit
changes to the platform. That is, an app developer could
create an app that runs on different AR platforms and, by in-
cluding the platform-appropriate version of a library, support
interactions among users with different types of AR devices.
For example, although we prototype our design as an app-
level library for HoloLens, in principle it could be adapted
for compatibility with Meta or Magic Leap apps.

3 Threat Model and Non-Goals
We aim to design a flexible module that helps app develop-
ers create multi-user AR apps that incorporate shared AR
content while mitigating the risk of undesirable interactions
between multiple users. We focus on the case of a devel-
oper building a single app and mediating the interactions of
its multiple users, deferring to future work the problem of
cross-app communication. We now present the threat model
under which we develop our design in Section 4, as well as
specify non-goals of this work.

Threat Model. Our primary focus in this work is on untrust-
worthy users. That is, we aim to help app developers create
multi-user AR apps that are resilient to security and privacy
threats between multiple users of the same app. In that con-
text, we assume that two or more users are using the same
AR app, written by the same developer and incorporating
our sharing module. We thus assume that users trust both the
developers of the apps that they install as well as their AR op-
erating system, but that users may not trust each other. This
trust dynamic is akin to traditional desktop environments —
e.g., where two users of a Unix operating system might both
trust the underlying system and installed apps, but might not
trust each other and hence might not make their home direc-
tories world readable or world writable. A key difference, as
noted earlier, is that in our model we only consider sharing
of content between users of the same app.

Under this threat model, we do not consider malicious
apps that omit or misuse our sharing module. We explic-
itly trust app developers to incorporate our module (e.g., as
an app-level library) into their apps; a malicious app de-
veloper might choose to simply not use our sharing mod-
ule, implementing their own adversarially-motivated sharing
functionality, or use our module but violate security or pri-

USENIX Association 28th USENIX Security Symposium 145

vacy properties through out-of-band means. Though a user
may install malicious apps alongside legitimate ones that use
our module, these malicious apps cannot interfere via our
module: we consider (and our module supports) AR content
sharing only among multiple users of the same app, rather
than also considering sharing across apps. This is consis-
tent with the capabilities of current AR technologies, which
are either single-app or do not allow multiple concurrently
running apps to communicate [33]. We also assume that all
users are running legitimate, uncompromised versions of the
app; strategies for verifying [36,75] or enforcing [73,74] this
assumption are significant research challenges of their own.

Finally, we assume that communication between devices
is secured with today’s best practices, e.g., end-to-end en-
crypted. Thus, we rule content eavesdropping and content
modification attacks as out of scope. Current network best
practices still suffer from denial-of-service attacks and traf-
fic analysis attacks, but we do not aim to protect against such
attacks in this work, focusing instead on the app-level secu-
rity and privacy issues.

Non-Goals. We consider the following design questions to
be non-goals of our present effort:

• Non-goal: UI/UX design. Although we propose un-
derlying mechanisms for the sharing control needs of
app logic, and although those mechanisms in some in-
stances have implications for what developers are em-
powered to surface at the UI level, we do not aim to de-
fine exactly how those mechanisms should manifest to
users in the specific interaction modality or look-and-
feel of an app. Thus, we leave the design of specific
interfaces — including how much of our module’s con-
trol should be surfaced directly to users versus shoul-
dered by the app — to future efforts by researchers and
app developers. Our work is similar in spiritspirit to
work on user interface toolkits (e.g., [25, 27]) in that
our goal is to enable app developers to easily create and
innovate on a range of user interfaces and experiences,
rather than to design and iterate on these interfaces di-
rectly.

• Non-goal: Network architecture design. It remains
an open question whether multi-user AR will ultimately
be enabled by client-server, peer-to-peer, or other net-
work architectures; we thus design our platform to be
agnostic to network architecture. Additionally, we do
not consider how two AR devices initially bootstrap
communication; prior, complementary work considers
how to securely pair two HoloLens devices [60].

• Non-goal: App-specific choices about sharing con-
trol properties. We do not aim to recommend to
apps which sharing control properties and functional-
ities might make sense in the context of the app, instead
enabling app developers to choose the appropriate sub-
set of properties for their specific use cases.

Figure 2: Basic object sharing flow: Alice creates the blue and
green boxes and then chooses to share the green box with Bob. See
Section 4.1 for details.

• Non-goal: Accurate spatial localization of AR users
and content. We do not aim to design a system by
which the location of an AR user can be accurately and
securely determined. Prior work has studied how to
localize devices accurately [23, 31], how to verify lo-
cation claims [10, 69], and how to verify co-location
claims [21, 55]. We note that even without further shar-
ing controls, future location-based AR apps will benefit
from secure location and co-location verification meth-
ods. Thus, we consider this topic to be orthogonal and
of independent in.

4 Design
We now present the design of a module that AR developers
can use to support secure and private sharing of AR content
among multiple users. Compatible with our threat model of
untrusted users but trusted developers, we envision this mod-
ule as an app-level library or an OS interface.

4.1 Module Design Overview

To illustrate the relationships between the OS, the sharing
control module, the app, and multiple users, we begin by
walking through a simple case of Alice creating two objects
and sharing one with Bob (Figure 2).

1. Precondition: Alice and Bob are both running an app
that incorporates the sharing module and, as such, al-
ready have an open communications channel between
their devices.

2. Object creation: Alice creates two AR objects, a small
blue box and a large green box. Her app calls the shar-
ing module’s InstantiateShared() API for both ob-
jects, allowing the module to track permissions at the
granularity of those objects (in this case, beginning with
view and edit permissions for only Alice).

3. Outbound sharing (app-level): Through some user in-
terface provided by the app, Alice chooses to share the
green box with Bob.

4. Outbound sharing (module-level): On Alice’s device,
the app calls the sharing module’s SetPermission()

146 28th USENIX Security Symposium USENIX Association

API. As a result, the module updates its internal per-
mission map, adding Bob to the list of users with view
permissions for the green box.

5. Communication: The sharing module sends a message
(via the device’s OS and networking stack) containing
object content and metadata to Bob’s device, whose OS
and networking stack dispatch it to the sharing module
in Bob’s instance of the app.

6. Inbound sharing (module-level): The sharing module
surfaces a SetPermission event to Bob’s app.

7. Inbound sharing (app-level): On Bob’s device, the app
shows some user interface to allow Bob to accept or
deny the shared object. (Other apps may skip this step
and show the object to Bob automatically, and/or re-
spect Bob’s previously-set preferences for shared ob-
jects from Alice.) Bob chooses to accept the shared ob-
ject from Alice; the app updates his view of the world
to include the green box.

8. State update and communication: The app calls the
sharing module’s AcceptObject() API, which in turn
transmits that message back to Alice’s device.

Following this transaction, Bob can now see a shared copy
of Alice’s green box and, depending on the sharing settings,
can manipulate that box in ways that are also visible to Alice.

This sharing flow might seem simple: the sharing control
module provides APIs that help an app keep track of which
users can access which AR objects — i.e., view and edit per-
missions — and syncs this information across the devices of
all users of the app. However, as surfaced in Section 2, shar-
ing in the AR context requires thoughtful consideration —
particularly in the face of users’ expectations of and interac-
tions within the physical world.

Key design challenges. While striving to achieve the func-
tionality and security goals identified in Section 2, our design
space exploration surfaced several key questions which do
not arise for sharing and access control in traditional systems
(e.g., file systems). These challenges are deeply connected
with AR’s integration with the physical world, and although
they do not on the surface appear to be security-centered
questions, they affect the security and privacy mechanisms
we design, and so we must address them:

• Integration of shared AR objects with the physical world
(Section 4.2): How is a shared object integrated into the
physical world? In the above example, do Alice and
Bob see the green box in the same physical location
or in different physical locations? Are Alice and Bob
themselves in the same physical location, and what hap-
pens when their co-location status changes?

• Private content in a shared physical world (Sec-
tion 4.3): How should the sharing module handle or
help shape users’ expectations of private AR content,
such as Alice’s blue box, when they interact in a shared
physical world?

Outbound
sharing controls

Inbound
sharing controls

What and
with whom Permission management Two-party sharing consent

Where Location coupling (§4.2) Personal space (§4.4)
How much Ghosting (§4.3) Clutter management

Table 1: Summary of the components of our design for controlling
the outbound and inbound sharing of AR content.

• Ownership of physical-world spaces (Section 4.4):
How can a sharing module help apps respect people’s
existing ownership of physical spaces? For example,
users may wish to control AR content that they or oth-
ers see in front of their homes or on their own bodies.

Effective solutions to these challenges must integrate with
the system design components that have more direct ana-
logues in current technologies. In particular, we incorporate
the following established control structures into our design:

• Permission management. We leverage classic access
control work [30] to track and enforce per-object and
per-user permissions. Although we aim to be compat-
ible with whichever access control model a particular
app chooses to layer atop our module — e.g., a model
akin to Google Docs for the Multi-Team Whiteboards
case study — we note that this alone is not enough to
support the 3D experience of AR, and that the above
key design challenges must also be addressed.

• Two-party sharing consent. Some existing sharing
models require that both the sharer and the receiver of
digital content authorize a sharing event before its com-
pletion (e.g., Google Drive, Apple AirDrop). We use
this principle in our design, with one twist: to help
developers avoid decision fatigue in apps with high-
volume content sharing, we allow the app to authorize
a sharing event without the user in the loop. For in-
stance, an app might automatically authorize content
under some contexts but not others [70], use a notifi-
cation UI that minimally disrupts the user’s workflow,
or allow users to always trust content from a specific
other user. We advise developers to be conscious of ha-
bituation and interruption in their app designs.

• Clutter management. Our design supports temporarily
or permanently removing an object from the user’s field
of view, as we discuss further in Section 4.2.

We summarize these aspects of sharing control, both new
and precedented, in Table 1. We categorize the design points
along two axes: (1) where in the above sharing flow the con-
trol occurs (outbound on the sharer’s end, or inbound on
the receiver’s end), and (2) what type of control is enforced
(what object is shared and with whom, where a shared object
can be, or how much information from that object is shared).

4.2 Physical World Integration

The sharing flow in Section 4.1 demonstrates the basic build-
ing blocks of a sharing module, with view and edit permis-

USENIX Association 28th USENIX Security Symposium 147

sions for users at the granularity of AR objects (e.g., a virtual
cat or virtual browser window). We now explore how these
notions become significantly more complicated when shared
AR objects are integrated into the physical world.

Location-coupled and -decoupled sharing. Recall from
Section 2 that we aim to support both physically co-located
sharing (i.e., two users in the same physical place and seeing
the same AR objects in the same physical locations) and re-
mote sharing (i.e., two users physically separated but seeing
the same AR objects in their own physical spaces).

Accordingly, our design supports two notions for how
an AR object can be shared with respect to the physical
world: (1) Location-coupled objects, which all users see in
the same physical location, and (2) Location-decoupled ob-
jects, where all users see the same object but in different
physical locations. In the coupled case, if one user moves
the object, other users also see the object’s location update;
in the decoupled case, the two instantiations of the object can
be moved independently.

We intend for these notions not to be mutually exclusive
for an object but rather to apply between sets of users. For
example, an AR object (say, a virtual whiteboard) may be
shared (1) in a location-coupled way between Alice and Bob
co-located in New York, and (2) in a location-coupled way
between Guanyou and Huijia in Beijing, and simultaneously
(3) in a location-decoupled way between the two groups.

Handling people moving around the physical world. A
challenge for location coupling and decoupling of shared
objects arises when we consider that users’ co-location can
change as they move around the physical world.

For example, suppose that Alice and Bob share a location-
coupled AR object — say, a whiteboard — both seeing it in
the same physical location. Alice may also share it in a
location-decoupled way with collaborator Carol working in
another room — i.e., Carol will see an instantiation of the
whiteboard in her own physical space. Initially, this appears
to meet our goals: all users see the whiteboard in their own
physical space in the same location as other co-located users.

What happens, however, when Carol moves into the same
physical space as Alice and Bob? Since the whiteboard is
shared among all of them, they will likely assume that all
three of them can now see the same AR whiteboard object
on the same wall [35]. This is not the case, however: Alice
and Bob see one instantiation of the whiteboard, and Carol
sees a separate instantiation in a slightly different location.

To resolve this potential inconsistency, our design keeps
track of all copies of a shared object, allowing the app to
show all of these copies to all users. Thus, when Carol joins
Alice and Bob in the same room, all users see both versions
of the whiteboard. All users then share the same view of the
augmented physical world. Note that this location informa-
tion may have privacy implications, though none in scope for
this work; we discuss this point further in Section 7.

Moreover, since users’ co-location may change over time,
their desired location-(de)coupling of objects may change
over time too. For example, in the above scenario, Alice and
Bob may wish to merge their whiteboard object with Carol’s
instantiation, so that all three indeed see the same, single
whiteboard object in the same place. Conversely, users may
wish to collaborate on a location-coupled object while they
are physically co-located but to both take their work with
them when they physically separate. Thus, we also provide
mechanisms to merge two location-decoupled instances into
a location-coupled object and to separate a location-coupled
object into two location-decoupled instances.

Another way to think about shared AR objects, then, is
that there is one conceptual object and potentially multiple
views of it. Each user sees a view in the same location as
do all other users, and users in different physical spaces will
see different views. If a user is in the same space as multiple
views, that user will see all present views. The object’s views
may be manipulated separately in space; a single view may
be split into two, or two may be merged into one, but the
underlying object that all views represent remains the same.

Implications of location coupling for object deletion. A
shared object’s location coupling or decoupling has design
implications for other features as well. For example, our de-
sign lets users delete AR content that they have created; it
is not clear, however, that this decision should propagate to
other users with whom the object has been shared, and loca-
tion coupling or decoupling affects how deletion is handled.

We design the module to support three cases, which can
be chosen by the app developer as appropriate:

1. Case 1: Local Deletion: Affect user’s local view of ob-
ject only. This option allows Alice to delete her object
without affecting other users. If, in Multi-Team White-
boards, Alice and Bob share a whiteboard in a location-
coupled manner, Alice can delete her instance of the
object while Bob keeps working.

2. Case 2: Global Location-Coupled Deletion: Affect all
users’ views of location-coupled object. Here, a deleted
object is also deleted for all other users with whom that
object was shared in a location-coupled way. That is,
when Alice deletes her document, Bob also sees that
document disappear. However, if Alice has also shared
the document in a location-decoupled way with remote
collaborator Carol, this option allows Alice to delete her
and Bob’s location-coupled instantiation without affect-
ing Carol’s remote, location-decoupled instantiation.

3. Case 3: Global, Location-Independent Deletion: Affect
all users’ view of object, independent of location cou-
pling. In this case, all instantiations of the object for
all users are deleted. Continuing the previous example,
Alice, Bob, and Carol will all see the object deleted.

Which of these cases is most appropriate depends on the
semantics of an app and each use case within that app.

148 28th USENIX Security Symposium USENIX Association

Location coupling and decoupling have other design and
implementation implications as well. For instance, hiding
content with which the user does not currently wish to inter-
act requires considering the same set of options as deletion.

4.3 Private Content in Shared Physical World

As raised in the Multi-Team Whiteboards case study in Sec-
tion 2 and in prior work [35], the fact that AR supports per-
user private content can have benefits, but it can also fail to
provide a signal about the use of physical space (e.g., lead-
ing to one user inadvertently standing in front of another’s
virtual content, or causing social tension due to one user not
knowing what another user is doing).

Thus, in this section we propose a design that allows users
to socially signal to other AR users that they are busy in-
teracting with private content without sharing the details of
their activities. Further, we aim for this design to align with
users’ intuitions about a shared physical world.

Strawman designs. Consider two incomplete solutions:
Status quo. A solution with no further intervention would
cause private content to be completely invisible to other AR
users. A user interacting with private content thus appears to
others as if the user were staring off into and manipulating an
undefined region of empty space, giving no cue to other users
about how far away the object is if they want to walk around
it as well as no sense for what the user might be doing.
Occlusion by virtual barrier. Meta’s developer guidelines
recommend that sensitive content be shared publicly but oc-
cluded by a virtual barrier such as a curtain [40]. Although
this does provide a shared-world physical intuition and social
cue, it is not a robust privacy-preserving mechanism. Con-
sider a user who places a virtual curtain around sensitive con-
tent so that the content is visible only from the user’s point
of view. A curious other user can surreptitiously look over
the user’s shoulder and observe the sensitive content, similar
to shoulder-surfing with current mobile devices [56, 64].

Our approach: “Ghosts”. We propose an alternate design
that achieves our goal while avoiding the above drawbacks.
The key idea is to allow users to share that they are inter-
acting with an AR object, without sharing the details of that
object. This idea is analogous to how a user interacting with
a smartphone implicitly signals to bystanders that they are
engaged in another activity located in the palm of their hand,
without the contents of that activity being directly revealed,
or to how users may share free/busy information about spe-
cific time blocks on their calendar to avoid double-booking
without sharing the details of their calendar events.

To support this interaction, we introduce a new partial-
visibility state for shared AR objects that we call ghosting.
Ghost objects show only their location in space, not the sen-
sitive content they contain, no matter at which angle they are
viewed. As such, unlike the above smartphone analogy, they
are not susceptible to shoulder-surfing. Furthermore, a user
with whom a ghost object is shared receives from the sharer

only the data needed to instantiate the ghost, rather than the
full object data; this further insulates the private content.

Ghost shape granularity. For non-planar objects, we en-
counter the following question: How does the sharing mod-
ule determine the appropriate level of granularity to expose
in the ghosted object, given that object shapes may contain
app-specific information content?

For instance, in Community Art, the ghost of a sculpture
that is private during its development should not mimic the
original sculpture’s shape too closely. However, a shape
with too coarse of a granularity — e.g., a large fixed-size
cube regardless of the sculpture — no longer gives mean-
ingful physical-world information to nearby users: e.g., by
marking an unreasonably large physical space as occupied.

To balance this dilemma,we allow app developers to spec-
ify what the ghosted view of an object should look like.
This approach allows for non-planar objects to assume an
obscured shape appropriate for the app-specific information
they carry. For instance, in the Community Art case study,
a sculpture that is private during its development might be
displayed to others as an appropriately sized cylinder.

4.4 Respecting Ownership of Physical Spaces

Finally, we turn to the question of how the sharing control
module can help apps respect people’s existing ownership
of physical-world space. We refer to both personal space
(near one’s body) and static owned space (e.g., one’s home)
as owned physical space in this section.

Helping users protect their owned physical spaces requires
several components: (1) Determining who owns a region in
space, (2) Determining what the boundaries of that region
are, and (3) Enforcing some kind of policy on shared AR
objects in that region.

We defer to future work (1), how to determine who owns
a region in space. This in itself is complex; for instance,
Google has analyzed abuse of location ownership in its Maps
app [26], and prior work has considered physical world
ownership for restricting continuous sensing apps (including
AR) [54]. Accounting for different types of space ownership
is also nontrivial: in particular, we identify (a) fixed-location
physical spaces (e.g., a house, a room, a storefront, or a pub-
lic park), (b) person-relative spaces (e.g., within 5 feet of a
user), and (c) object-relative spaces (e.g., within 35 feet of a
virtual art object). A complete solution to this issue should
also consider non-AR users, and we offer the following sug-
gestion as a starting point for future work: locally on the AR
user’s device, employ computer vision techniques to identify
the spatial positions of bystanders visible by the AR user,
estimate the rough pose for each bystander, and use that in-
formation to mark bystanders’ forms as protected regions of
space (e.g., using techniques from [2, 39]). However, we do
not pursue this topic further in this work, since it is a com-
plex area of investigation in its own right; instead, we assume
a prior definition of owned physical space, and we focus on

USENIX Association 28th USENIX Security Symposium 149

the challenges of enforcing that space.
For (2), we observe that defining the boundaries of a pro-

tected region of physical space — e.g., around a person or
house — is not a simple binary determination. A user might
perceive an object two feet away to be too close, for in-
stance, but may consider an object nine inches away to be
even more so; this definition may also vary across different
users [22]. Building on this observation, our solution is to
model owned physical space as a continuum, where viola-
tions become more severe — and thus policies could become
stricter — as virtual content approaches the protected region.

The key question, then, is (3): what should an app do when
one user’s shared AR content overlaps another user’s per-
sonal physical space, or a physical region (e.g., a house) that
another user owns?

Policies for AR content violating owned spaces. To an-
swer this question, we propose that the sharing control mod-
ule can provide a variety of policies that an app’s developer
could choose to apply in such a case. These policies can be
enforced either such that the result of enforcement is only
visible to the user whose personal space is in question, or
such that all users with access to the shared object see the
result of enforcement. App developers may choose which
policies to enable based on the needs of the app.

A simple, binary policy might make objects invisible in-
side a fixed radius: for instance, define a three-foot radius
around a person within which AR content should not be vis-
ible (at least to that user). Such a policy can be exploited
by surrounding the person with AR content just outside the
boundary; thus, there is a tension between a large radius to
minimize the effects of such an attack and a small radius to
enable legitimate functionality.

To help balance this tension, and to take advantage of the
continuum in the boundary described above, our design pro-
vides a transparency gradient policy, by which the module
makes shared objects more transparent the closer the objects
are to the boundary of any protected region (e.g., around
a person). Under this policy, objects would start becom-
ing transparent much farther than three feet away, avoiding
blocking the person’s vision but still being useful.

By having owned-space policies be enforced by apps
themselves (via the sharing module), rather than by users,
they can be applied without changing the underlying permis-
sions on the shared object. This avoids two pitfalls. First, it
prevents malicious users from exploiting the policy, e.g., by
gaining control of an object simply by walking up to it. Sec-
ond, it enables policy enforcement even on objects that the
physical space owner cannot see (protecting even non-AR
user bystanders from the “kick me” sign from Section 2).

5 Implementation
We now describe our prototype, which we implement as an
app-level library for the Microsoft HoloLens, demonstrating
the feasibility of our design for a currently available head-

mounted AR platform. Our prototype, called ShareAR, is
implemented in C# and uses the HoloLens Unity develop-
ment kit. We implemented the concept of an AR object us-
ing the Unity GameObject primitive, which is a virtual en-
tity comprising shape, texture, location, physics properties,
script-controlled behavior, etc. Our implementation consists
of a core module (1888 lines of code), a network shim layer
(1137 lines of code), and a short supplementary script to
accompany any object shared using the toolkit (45 lines of
code), totalling 3070 lines of code.2

The ShareAR core comprises:

• Data and meta-data, including an access control ma-
trix [30] and options for how objects are shared (e.g.,
location coupled or decoupled).

• Methods to instantiate objects, manually or automati-
cally accept shared objects, change permissions on ob-
jects, and sync data between users. Table 2 summarizes
sample corresponding message types in our prototype.

• Simple fixed-radius personal space controls in the form
of Unity’s plane clipping, where the portion of an object
closer to the user than the fixed plane-clipping distance
is not rendered. We did not implement more nuanced
controls, like our proposed transparency gradient.

Though network architecture is out of scope of our design,
in practice we must choose some way to connect between
HoloLens devices. In our prototype, we used the MixedReal-
ityToolkit Sharing toolkit, an open-source library from Mi-
crosoft.3 MixedRealityToolkit does not provide any sharing
control or access control functionality; we use it only as a
basic tunnel to send messages between HoloLens devices.

We build a network shim layer that serializes and deserial-
izes ShareAR messages and uses MixedRealityToolkit Shar-
ing to send them between devices. A developer who wishes
to use a different networking solution — e.g., one relying fur-
ther on a central server for data storage, or one implementing
a more rigorous consensus protocol — may write a replace-
ment network shim layer satisfying the same interface with
the ShareAR core.

Users may join, leave, and re-join the network. To be ro-
bust to access control changes occurring while a user is of-
fline, we include in our implementation a means for a newly
reconnected user to receive a “digest” version of an object
containing only the information needed for consistency with
the other online users. Since consensus is best done with
network architecture in mind, we provide a means to create
this object “digest” as a higher-level functionality but rele-
gate consensus operations to the networking shim layer.

2To calculate lines of code, we use the CLoC tool version 1.80 available
at https://github.com/AlDanial/cloc/releases/tag/v1.80. We
omit lines of code solely related to our performance evaluation.

3https://github.com/Microsoft/MixedRealityToolkit-
Unity

150 28th USENIX Security Symposium USENIX Association

https://github.com/AlDanial/cloc/releases/tag/v1.80
https://github.com/Microsoft/MixedRealityToolkit-Unity
https://github.com/Microsoft/MixedRealityToolkit-Unity

Message name Sent when Bytes

InstantiateShared A new shared object is created 104
AcceptObj A newly-shared object is accepted 22

SetPermissionNew A newly-instantated public object is accepted and there are more than 2 users present 38
SetPermissionObject A permission change is made or offered on an existing object 92

SetPermission A permission change on an existing object is accepted and there are more than 2 users present 54
UpdateLocation A shared object’s location in space is updated 62
DeleteShared A shared object is deleted 22

Table 2: Example message types and sizes in our prototype. Messages are relatively small because they do not include full AR object meshes
but rather an ID corresponding to the type of object in question and a string of object data that fully specifies the particular object of that
type. Sizes are for basic objects with no additional object data.

Feature Paintball Cubist Art Doc Edit

Location-coupled sharing X X
Location-decoupled sharing X

Public permission settings X X X
Ghost-only permission settings X
Private permission settings X X

Auto-accepting content X X
Accepting content ad hoc X

Local deletion X X
Global location-coupled deletion X
Global location-indep. deletion X

Updating object location X X
Updating object data X X

Table 3: ShareAR sharing control features in case study apps.

6 Evaluation
We now evaluate our prototype’s functionality (Section 6.1),
security (Section 6.2), and performance (Section 6.3).

6.1 Functionality Evaluation

We evaluate the functionality of our prototype by implement-
ing case study apps and by comparing against existing AR
design guidelines. We find that our prototype is flexible
enough to support a range of app sharing control needs and
is compatible with all considered existing design guidelines.

Case study applications. To evaluate the flexibility of our
design to support our functionality goals, and the associated
developer effort, we built bare-bones prototype versions of
our case studies from Section 2.1: Paintball, Doc Edit (a vari-
ant of Multi-Team Whiteboards), and Cubist Art. (We did not
implement Soccer Arena, since it does not surface new secu-
rity, privacy, or functionality requirements not covered by the
other case studies. Section 2 provides further analysis.) Our
prototypes are intended to cover a broad spectrum of sharing
control functionalities; see Appendix A for detailed descrip-
tions of the apps. Screenshots of the apps are in Figure 3, the
range of sharing control features each exercises is in Table 3,
and the sharing-related lines of code for each is in Table 4.

We use lines of code as a proxy measure for developer
effort (see Table 4). For each app, we count the total lines
of code in the app and the lines of code specific to shar-
ing functionality. The low number of sharing-related lines of
code suggests that the burden on app developers to use our

Figure 3: Screenshots of prototype apps: Cubist Art (top), Doc Edit
(bottom left), and Paintball (bottom right). In the Doc Edit app, the
semitransparent gray box in front of the file cabinet in the upper left
is a ghost view of another user’s document, and the two red boxes
are two users’ separate instantiations of the same shared document.

toolkit in practice is reasonable. Furthermore, we conjec-
ture that fully fledged apps are likely to contain many more
lines of code unrelated to sharing, further reducing the com-
parative proportion of sharing-related lines of code in the
app. We note also that the repetition of some prototyped fea-
tures across multiple apps (such as location-coupled sharing
in both the Paintball and Shared Blocks apps) suggests that
ShareAR’s features are composable, and that developers can
choose an app-appropriate subset of functionality.

Compatibility with existing guidelines. We also consider
the compatibility of ShareAR with existing design guidelines
from AR headset manufacturers. We focus on guidelines
related to multi-user interactions, asking: Does ShareAR
allow an app developer to meet these guidelines? We in-

USENIX Association 28th USENIX Security Symposium 151

App Sharing LoC Total LoC
Paintball 13 240
Doc Edit 173 1236
Cubist Art 153 1131

Table 4: Lines-of-code counts for the three prototype applications.
We report both the total lines of code for the application and the
lines of code dedicated to interfacing with the ShareAR toolkit.

vestigate the Microsoft HoloLens guidelines [43] and Meta
guidelines [40]; we find that ShareAR is compatible with all
of them. The results are summarized in Table 5; see Ap-
pendix B for additional information.

6.2 Security Evaluation

We examine the security and privacy of our ShareAR-
enabled apps under our threat model of untrusted users (but
trusted OS and apps). As described in Section 3, we rely on
app developers to use the ShareAR APIs that are appropri-
ate for their use case. For the sake of exposition, we focus
on the Doc Edit app since it invokes all of the restrictions our
ShareAR prototype supports; our observations also extend to
Paintball and Cubist Art where applicable.

We find that ShareAR’s security and privacy restrictions
function as intended and meet the security goals in Sec-
tion 2.3. Considering first the outbound security goals:

• Support granting/revoking per-user permissions: The
Doc Edit app includes a menu that allows a user to grant
and revoke per-user permissions. A user who never re-
ceived or no longer has view permissions on a document
cannot see it.

• Support granting/revoking per-object permissions: The
aforementioned menu controls permissions on a per-
document basis: only the currently selected document
is affected by a permission change.

• Support physically intuitive access control restrictions:
Doc Edit provides a ghost version of a document ob-
ject (as a flat gray box). A user with permission only to
view the ghost cannot tell if the original document is red
or not; but the user sees the ghost in the same location
as the document’s owner sees the original document,
and this location remains synchronized when the docu-
ment’s owner moves the document in physical space.

Considering the inbound security goals from Section 2.3:
• Support user control of incoming virtual content: The

Doc Edit app surfaces an incoming permission-granting
message to the user via a small menu, through which
the user can choose to accept or decline. If the user
accepts, a new (location-decoupled) instantiation of the
document appears in front of the user, and the user can
also see the sharer’s instantiation of the document in its
full (rather than ghost) form. If the user declines the
document, no such change occurs.

• Support user control of owned physical space: As de-
scribed in Section 5, our prototype leverages a Unity

plane-clipping feature to implement simple owned
physical space enforcement. We clip parts of any object
closer to the user than 0.85 m (with the distance chosen
to match a HoloLens recommended setting [42]).

6.3 Performance Evaluation

We now evaluate ShareAR’s performance, measuring its op-
erations (and comparing them to baseline operations where
possible) and studying how it scales with numbers of vir-
tual objects and users. We find that ShareAR imposes only a
modest overhead on interdevice communication even as the
number of objects and users increases.

Experimental setup. We build an app (1506 lines of C#
code) to exercise ShareAR’s components and measure its
performance. In our test app, a test device creates objects that
are location-coupled or location-decoupled, sharing them
publicly, as ghosts, or keeping them private. One or more
other test devices auto-accept or manually accept objects.
The first device changes the objects’ permissions, updates
the objects’ location, and finally deletes the objects.

Our experimental setup consists of five HoloLens devices
communicating on the same local network, in two exper-
imental scenarios: (1) for each n ∈ {1,2,3,4,5}, we se-
lect n devices and fix h = 1 shared AR object; (2) for each
h ∈ {20,21,22,23,24,25}, we set h to be the number of ob-
jects present and fix n = 2 devices. All devices run our eval-
uation app with the same n and h parameters; all devices join
the network sequentially, and then the last device to join the
network triggers the evaluation app.

The operations we measure are Create, Accept

Create, Change Permission, Accept Change, Update
Location, and Delete. Each operation involves work done
on User A’s device to initiate the operation, a message sent
across the network from User A to User B, and work done on
User B’s device to process the operation. Note that in some
cases (for Create and Change Permission) User B’s de-
vice reacts by initiating an operation that we also measure
(Accept Create and Accept Change).

In addition to measuring the within-module time for A’s
initiating action and B’s receiving action, we measure and
report on operation completion time, i.e., the time it takes
from A’s initiating action until B has finished processing. To
correct for clock skew between the two devices, we add into
the evaluation script a message from B to A containing B’s
timestamps (note that this is not part of our module’s pro-
tocol, but exists solely for the purposes of the evaluation).
Device A then combines this information with its own times-
tamps to compute the final timing numbers.

Finally, for the sharing module operations that clearly cor-
respond to a primitive Unity operation (Create, Update

Location, and Delete), we also measure as a baseline the
timing of the Unity operation.

We repeat each evaluation point — defined by operation,
configuration (e.g., location coupled or decoupled), number

152 28th USENIX Security Symposium USENIX Association

Guideline Short description Source Support?
How are they sharing? Design for app’s purpose of sharing: presentation,

collaboration, guidance
HoloLens Developer Guidelines [43] X*

What is the group size? Accommodate as many users as the app expects to
need

HoloLens Developer Guidelines [43] X*

Where is everyone? Support users in the same or different physical spaces
as needed

HoloLens Developer Guidelines [43] X

When are they sharing? Design for asynchronous or real-time sharing as ap-
propriate

HoloLens Developer Guidelines [43] X*

How similar are their physical
environments?

Place objects appropriately in non-co-located users’
environments

HoloLens Developer Guidelines [43] X

What devices are they using? Integrate with VR as needed HoloLens Developer Guidelines [43] X*
Clip planes near user Set minimum visible distance for object to 0.85 m HoloLens Hologram Stability Guide-

lines [42]
X*

Do not disturb Avoid incessant notifications to user Meta Developer Guidelines [40] X*
The holographic campfire Allow users to see each other Meta Developer Guidelines [40] X
Public by default Support shared-world intuition by making content

publicly visible
Meta Developer Guidelines [40] X*

Table 5: Summary of ShareAR’s compatibility with existing multi-user AR design guidelines. For the check marks with a * appended, see
Appendix B for additional details.

of users, and number of objects — for 2 warm-up trials and 5
measured trials, reporting the mean and standard deviation.

Basic profile of operations. We begin by considering
ShareAR’s operations with a single pair of users (n= 2) shar-
ing a single object (h = 1).

The overall operation completion time is between approx-
imately 70 ms and 250 ms, depending on the operation and
configuration. This overall time is significantly dominated
by factors external to the ShareAR module, and that any
multi-user sharing solution would encounter: i.e., the net-
work latency and the HoloToolkit Sharing library on either
end of it. The overhead specific to ShareAR is minimal: we
find that Create and Change Permissions operations are
most expensive on average, still taking less than 5 ms in the
worst case for the computation on each device; all other oper-
ations take less than 1 ms on each device. For the operations
that we can compare directly with Unity baselines, we also
find that ShareAR’s overhead is minimal: the operations stay
within 2.5 ms of the baseline in the worst case.

Scaling with the number of users. Next, we consider how
ShareAR scales as the number of users increases.

In terms of network traffic, a user sharing an object needs
to send object create and update messages to n− 1 others;
additionally, once a user accepts a sharing offer, their device
sends an acceptance message back to the sharer and an in-
formational message to all other n− 2 users to stay in sync.
The total number of messages in the interaction thus scales
quadratically. For updates to already-shared objects (loca-
tion change, deletion), the sharing user sends one message
per other user, and no replies or additional messages are sent
(overall scaling linearly with users).

In terms of timing, all operations under all test condi-
tions took less than 5 ms. For all but Create and Change

Permission, the operations on average remained under
1 ms. These overheads are reasonable, especially given their
small additional overhead beyond to the corresponding base-

line operations where present (shown with a dashed line for
Create, Update Location, Delete). More detailed per-
formance data is in Appendix C.

In terms of scaling, Create and Change Permission

scale approximately linearly with the number of users; all
other operations remain approximately constant. Different
configurations for an operation (e.g., location coupled ver-
sus decoupled sharing, or different object deletion modes)
may slightly affect performance (as reflected in the differ-
ently colored lines in the graphs), typically taking longer for
location-decoupled objects due to the overhead of processing
multiple instantiations of the same object.

Scaling with the number of objects. Finally, we measure
ShareAR with increasing numbers of AR objects.

In terms of network traffic, we observe that it scales lin-
early with the number of objects, as each operation and as-
sociated message is independent per object.

In terms of timing, all operations took less than 3 ms
(and often less than 1 ms). These overheads are reasonable,
especially given their relation to the corresponding base-
line operations where present. (For the module operations
for which a baseline Unity operation is plotted — Create,
Update Location and Delete— the relevant module op-
eration timing is very close to that of the baseline Unity op-
eration.) Additional details are in Appendix C.

In terms of scaling, for all operations, the time taken is
approximately constant per object as the number of objects
scales: in other words, an operation on one object registered
with the module is independent of how many other objects
are also registered with the module. Some operations exhibit
a slight slope downward, suggesting caching benefits.

Performance evaluation summary. From our measure-
ments, we see that object creation and permission changes
are the most computationally expensive operations. How-
ever, we anticipate that in practice these operations will only
occur during a small fraction of the frame updates in an app.

USENIX Association 28th USENIX Security Symposium 153

Even so, the greatest observed time taken for an operation
was under 5 ms, and most measurements remained under
1 ms. Furthermore, since these measurements were of our
unoptimized research prototype, continued code optimiza-
tion may bring the performance overhead down even further.

7 Discussion
This work presents the first systematic investigation of multi-
user sharing control for AR apps. We propose a module that
is flexible enough to support many different decisions by app
developers. Below we discuss several examples of future
directions enabled by our work.

Execute permissions. Although multi-user AR systems are
still primitive, we envision that future systems will support
not only read and write but also execute permissions. One
possible manifestation may be to allow a user to execute
predefined actions on another user’s object without having
full edit control. For instance, an app may allow other users
to make a virtual dog wag its tail without allowing them to
make the dog arbitrarily large. Our module can be extended
to include additional permissions, including this one.

Asynchronous sharing. Our design exploration assumes
that both users are online when a sharing action occurs; ex-
tensions of our work could explore removing this assump-
tion. For example, consider a user who places publicly vis-
ible virtual decorations outside their home. We may want
(1) the objects to still be visible to a passerby when the user
is not home, but (2) the passerby’s device to only become no-
tified of the objects’ existence and public visibility when the
passerby is physically proximate to the home. Such a design
may require an alternate network architecture than peer-to-
peer; our module’s network agnosticism would support this.

Minimizing developer errors. We emphasize that one con-
sequence of our module’s flexibility is that developers must
be cautious to use it in a way that supports their app use case.
Some potential user-to-user threats may be subtle: for exam-
ple, if app developers chose to share ghost objects automat-
ically with no way to refuse or delete them, one user might
intentionally or accidentally clutter another user’s view with
ghost objects (an example of a denial-of-service attack). Or,
if an app developer implements a personal space policy that
makes AR objects invisible to all users but does not provide
a way to interact with or retrieve an invisible object, then a
malicious user could walk up to others’ objects to force them
to become invisible and non-interactible. Still other pitfalls
may depend on app semantics: for instance, if the developer
of an app such as Community Art does not put limits on users,
a user could monopolize a common space and prevent other
users from placing objects there. Future work, then, may
explore ways to support app developers in using the features
from our system that are most suitable for their overall goals.

Analysis in the wild. More broadly, our work lays a founda-
tion for future empirical studies on how developers use our

module’s components in practice and how users respond to
concrete usage of these components. Such an evaluation is
nontrivial since evaluating the usability of a single app does
not generalize well to the usability of others [45], for the
same reason described in Section 2 that a sharing control
module cannot be one-size-fits-all. However, we note the im-
portance of follow-up studies considering user perceptions
when making specific design decisions, and we encourage
future work to leverage our technical foundation to examine
under which circumstances certain sharing mechanisms are
appropriate.

Location privacy. Much multi-user app functionality, in-
cluding our design, requires that users share their location
with the app: sharing at least where one is within a physical
space is necessary for location-synchronized virtual content.
Some users may not anticipate or agree with such location
sharing, even for trustworthy apps, though such sharing may
be fundamental to the design of location-based AR apps. Ad-
ditional location privacy concerns could be introduced by
app developers, if app developers mishandle and acciden-
tally or intentionally expose a user’s location to other users.
This threat, however, is dependent upon app-level semantics,
and is neither unique to nor preventable by the underlying
sharing framework. We encourage future work to explore
this point further.

Inherently conflicting goals. Finally, we conjecture that
there may be fundamental tensions in some aspects of se-
cure and private content sharing between users. For exam-
ple, consider the case of a shared space in which one user
owns a publicly visible ball object and another user owns a
private wall object. When the public ball is thrown at the pri-
vate wall, it is not obvious which user(s) should see the ball
rebound. If the ball rebounds for both users, then the ball
owner gains information about the presence of the wall; if
the ball does not rebound for either user, then the wall owner
sees the ball go through the wall, defying physics; if only
the wall owner sees the ball rebound, then the two users no
longer have a synchronized view of the shared space. De-
termining how physics-obeying virtual objects should inter-
act to minimize information leakage via this side channel
while maximizing physical intuition is a subtle area for fu-
ture work, and we conjecture that no content sharing solution
can simultaneously achieve both goals perfectly.

8 Related Work
Although AR has a long history (e.g., [61]), the computer
security community has only recently begun examining the
space [13, 52]. Prior efforts on AR security and privacy in-
clude filtering raw real-world input [12, 28, 49, 54, 65] and
regulating untrusted AR output [32, 34]. These efforts focus
on the case of a single user interacting with an AR device.

Literature on multi-user AR security and privacy is just be-
ginning to emerge. Some prior work has proposed methods

154 28th USENIX Security Symposium USENIX Association

for secure device pairing via out-of-band channels [19, 60];
our work is complementary. Other prior work has proposed
specific multi-user interaction modalities, such as location-
based interfaces for making virtual content private and au-
diting content visibility [8, 9], mediating shared experiences
with remote collaborators [50], and using personal tablets in
shared spaces to separate private and public content [62,72].
While these works present specific multi-user AR systems,
our work is the first to systematically and broadly consider
the design space for AR sharing control and our module
could be leveraged when implementing these prior ideas.

There is a rich literature on access control (see, e.g., [7] for
an overview). Our work does not assume what access control
model is best for a particular app. Our implementation lever-
ages an access control matrix [30] as a simple and flexible
model for per-user and per-object permissions; we intend for
other established access control models in specific app con-
texts (e.g., [17, 68]) to be layered on top of our toolkit, and
we instead focus on the challenges of managing the implica-
tions of access control in the 3D physical AR setting.

Work in AR user experience has surfaced security- and
privacy-relevant themes for multi-user contexts. Lebeck et
al. [35] surface multi-user concerns such as physiological at-
tacks, virtual clutter, and the obscurity of other users’ ac-
tions. Poretski et al. [48] examine normative tensions in AR,
emphasizing enforcing personal space and designing for user
control. Olsson et al. [46,47] identify user needs such as con-
trol over privacy, socially appropriate ways to interact with
devices, and solutions for abuse of public content by other
users. These studies shed light on desired system properties
and user concerns but do not directly address system design;
our work builds concretely on these findings.

Multi-user digital interactions that take place in a physical
space have also been studied in the context of tabletop inter-
faces and large computerized displays [44, 57–59, 71]. Our
work addresses similar needs for and tensions around public
versus private content arising in the AR setting, where im-
mersive 3D content can be situated anywhere in the physical
world rather than constrained to a shared display.

9 Conclusion

Multi-user AR technologies hold much promise, but also
raise security and privacy risks in the potentially undesir-
able interactions between human users. These risks should
be addressed while AR ecosystems are being actively devel-
oped rather than after sub-optimal ad hoc conventions have
taken root. To that end, we are the first to systematically
develop a set of security and functionality goals for multi-
user AR. We present the design of a sharing control module
for AR content, which we envision as an app-level library or
OS interface that can be leveraged by app developers. Our
work identifies and addresses key challenges that stem from
AR’s tight integration into the physical world. Our proto-

type, ShareAR,4 for the Microsoft HoloLens demonstrates
the feasibility of our design, and our evaluation suggests that
it meets our design goals and imposes minimal performance
overhead. By addressing multi-user AR sharing control sys-
tematically now, we are taking steps toward securing the
fully fledged multi-user AR applications of the future.

Acknowledgments
We thank Ivan Evtimov, Earlence Fernandes, Kiron Lebeck,
Lucy Simko, and Anna Kornfeld Simpson for valuable dis-
cussions and feedback on previous drafts; we thank James
Fogarty for his advice on tabletop interface related work.
This work was supported in part by the National Science
Foundation under awards CNS-1513584, CNS-1565252, and
CNS-1651230, and by the Washington Research Foundation.

References
[1] J. Alexander. ‘Ugandan Knuckles’ is overtaking VRChat, Jan.

2018. https://www.polygon.com/2018/1/8/16863932/
ugandan-knuckles-meme-vrchat.

[2] R. Alp Güler, N. Neverova, and I. Kokkinos. DensePose:
Dense human pose estimation in the wild. In CVPR, 2018.

[3] E. Alvarez. Facebook’s next big augmented real-
ity push is multiplayer games, Sept. 2018. https:

//www.engadget.com/2018/09/07/facebook-ar-
games-multiplayer-first-look/.

[4] ARCore. https://developers.google.com/ar/.

[5] ARKit. https://developer.apple.com/arkit/.

[6] AR Studio. https://developers.facebook.com/
products/camera-effects/ar-studio/.

[7] M. Bishop. Computer Security: Art and Science. Addison-
Wesley Professional, 2nd edition, 2018.

[8] A. Butz, C. Beshers, and S. Feiner. Of vampire mirrors and
privacy lamps: Privacy management in multi-user augmented
environments. In ACM UIST, 1998.

[9] A. Butz, T. Höllerer, S. Feiner, B. MacIntyre, and C. Besh-
ers. Enveloping users and computers in a collaborative 3D
augmented reality. In IEEE/ACM International Workshop on
Augmented Reality, 1999.

[10] J. T. Chiang, J. J. Haas, and Y.-C. Hu. Secure and precise lo-
cation verification using distance bounding and simultaneous
multilateration. In WiSec, 2009.

[11] S. Curtis. Sex pests are using Apple AirDrop to
send explicit pictures to unsuspecting commuters, Aug.
2017. https://www.mirror.co.uk/tech/sex-pests-
using-apple-airdrop-10987968.

[12] L. D’Antoni, A. Dunn, S. Jana, T. Kohno, B. Livshits, D. Mol-
nar, A. Moshchuk, E. Ofek, F. Roesner, S. Saponas, et al.
Operating system support for augmented reality applications.
HotOS, 2013.

[13] J. A. de Guzman, K. Thilakarathna, and A. Seneviratne. Se-
curity and privacy approaches in mixed reality: A literature
survey, 2018. http://arxiv.org/abs/1802.05797.

4See arsharing.cs.washington.edu or arsharingtoolkit.com

USENIX Association 28th USENIX Security Symposium 155

https://www.polygon.com/2018/1/8/16863932/ugandan-knuckles-meme-vrchat
https://www.polygon.com/2018/1/8/16863932/ugandan-knuckles-meme-vrchat
https://www.engadget.com/2018/09/07/facebook-ar-games-multiplayer-first-look/
https://www.engadget.com/2018/09/07/facebook-ar-games-multiplayer-first-look/
https://www.engadget.com/2018/09/07/facebook-ar-games-multiplayer-first-look/
https://developers.google.com/ar/
https://developer.apple.com/arkit/
https://developers.facebook.com/products/camera-effects/ar-studio/
https://developers.facebook.com/products/camera-effects/ar-studio/
https://www.mirror.co.uk/tech/sex-pests-using-apple-airdrop-10987968
https://www.mirror.co.uk/tech/sex-pests-using-apple-airdrop-10987968
http://arxiv.org/abs/1802.05797
arsharing.cs.washington.edu
arsharingtoolkit.com

[14] T. Denning, Z. Dehlawi, and T. Kohno. In situ with bystanders
of augmented reality glasses: Perspectives on recording and
privacy-mediating technologies. In CHI, 2014.

[15] Digi-Capital. Ubiquitous $90 billion AR to dom-
inate focused $15 billion VR by 2022, 2018.
https://www.digi-capital.com/news/2018/01/
ubiquitous-90-billion-ar-to-dominate-focused-

15-billion-vr-by-2022/.

[16] A. P. Felt, S. Egelman, M. Finifter, D. Akhawe, and D. Wag-
ner. How to ask for permission. In HotSec, 2012.

[17] D. Ferraiolo and R. Kuhn. Role-based access controls. In
NCSC, 1992.

[18] C. Fink. The trillion dollar 3D telepresence gold
mine, Nov. 2017. https://www.forbes.com/sites/
charliefink/2017/11/20/the-trillion-dollar-3d-

telepresence-gold-mine/#42b8f0a12a72.

[19] E. Gaebel, N. Zhang, W. Lou, and Y. T. Hou. Looks good to
me: Authentication for augmented reality. In TrustED, 2016.

[20] J. Gallagher. Upcoming game easily shows you how to master
paintball, Aug. 2017. https://mobile-ar.reality.news/
news/apple-ar-upcoming-game-easily-shows-you-

master-paintball-0179651/.

[21] G. Hancke and M. Kuhn. An RFID distance bounding proto-
col. In SECURECOMM, 2005.

[22] L. A. Hayduk. Personal space: Where we now stand. Psycho-
logical Bulletin, 94(2):293–335, 1983.

[23] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Ab-
delzaher. Range-free localization schemes for large scale sen-
sor networks. In MobiCom, 2003.

[24] Microsoft HoloLens. https://www.microsoft.com/
microsoft-hololens/en-us.

[25] S. Houben and N. Marquardt. WatchConnect: A toolkit for
prototyping smartwatch-centric cross-device applications. In
CHI, 2015.

[26] D. Y. Huang, D. Grundman, K. Thomas, A. Kumar,
E. Bursztein, K. Levchenko, and A. C. Snoeren. Pinning down
abuse on google maps. In WWW, 2017.

[27] S. E. Hudson, J. Mankoff, and I. Smith. Extensible input han-
dling in the subArctic toolkit. In CHI, 2005.

[28] S. Jana, D. Molnar, A. Moshchuk, A. M. Dunn, B. Livshits,
H. J. Wang, and E. Ofek. Enabling fine-grained permis-
sions for augmented reality applications with recognizers. In
USENIX Security, 2013.

[29] S. W. Kim. 3D document editing system. U.S. Patent Appli-
cation 20180081519, 2016, https://bit.ly/2N5Dt2S.

[30] B. W. Lampson. Protection. SIGOPS Oper. Syst. Rev.,
8(1):18–24, Jan. 1974.

[31] L. Lazos and R. Poovendran. SeRLoc: Secure range-
independent localization for wireless sensor networks. In
WiSe, 2004.

[32] K. Lebeck, T. Kohno, and F. Roesner. How to safely augment
reality: Challenges and directions. In HotMobile, 2016.

[33] K. Lebeck, T. Kohno, and F. Roesner. Enabling multiple ap-
plications to simultaneously augment reality: Challenges and
directions. In HotMobile, 2019.

[34] K. Lebeck, K. Ruth, T. Kohno, and F. Roesner. Securing aug-
mented reality output. In IEEE Symposium on Security & Pri-
vacy, 2017.

[35] K. Lebeck, K. Ruth, T. Kohno, and F. Roesner. Towards se-
curity and privacy for multi-user augmented reality: Foun-
dations with end users. In IEEE Symposium on Security &
Privacy, 2018.

[36] L. Li, D. Li, T. F. Bissyandé, J. Klein, Y. Le Traon, D. Lo,
and L. Cavallaro. Understanding Android app piggybacking:
A systematic study of malicious code grafting. IEEE TIFS,
12(6):1269–1284, 2017.

[37] Magic Leap. https://www.magicleap.com/#/home.

[38] L. Matney. Jeff Koons’ augmented reality Snapchat artwork
gets ‘vandalized’, Oct 2017. https://techcrunch.com/
2017/10/08/jeff-koons-augmented-reality-

snapchat-artwork-gets-vandalized/.

[39] D. Mehta, O. Sotnychenko, F. Mueller, W. Xu, S. Sridhar,
G. Pons-Moll, and C. Theobalt. Single-shot multi-person 3D
pose estimation from monocular RGB. In 3DV, 2018.

[40] Meta. Spatial interface design: Public by default. https:

//devcenter.metavision.com/design/spatial-
interface-design-principles-public-by-default.

[41] https://www.metavision.com/.

[42] Microsoft. Hologram stability. https://

docs.microsoft.com/en-us/windows/mixed-reality/
hologram-stability.

[43] Microsoft. Shared experiences in mixed reality. https:

//developer.microsoft.com/en-us/windows/mixed-
reality/shared experiences in mixed reality.

[44] M. R. Morris, A. Cassanego, A. Paepcke, T. Winograd, A. M.
Piper, and A. Huang. Mediating group dynamics through
tabletop interface design. IEEE CGA, 6(5):65–73, 2006.

[45] D. R. Olsen, Jr. Evaluating user interface systems research. In
UIST, 2007.

[46] T. Olsson, T. Kärkkäinen, E. Lagerstam, and L. Ventä-
Olkkonen. User evaluation of mobile augmented reality sce-
narios. Journal of Ambient Intelligence and Smart Environ-
ments, 4:29–47, 2012.

[47] T. Olsson, E. Lagerstam, T. Kärkkäinen, and K. Väänänen-
Vainio-Mattila. Expected user experience of mobile aug-
mented reality services: A user study in the context of shop-
ping centres. Personal and ubiquitous computing, 17(2):287–
304, 2013.

[48] L. Poretski, J. Lanir, and O. Arazy. Normative tensions in
shared augmented reality. CSCW, 2018.

[49] N. Raval, A. Srivastava, A. Razeen, K. Lebeck,
A. Machanavajjhala, and L. P. Cox. What you mark is
what apps see. In MobiSys, 2016.

[50] D. Reilly, M. Salimian, B. MacKay, N. Mathiasen, W. K. Ed-
wards, and J. Franz. Secspace: Prototyping usable privacy
and security for mixed reality collaborative environments. In
ACM SIGCHI EICS, 2014.

156 28th USENIX Security Symposium USENIX Association

https://www.digi-capital.com/news/2018/01/ubiquitous-90-billion-ar-to-dominate-focused-15-billion-vr-by-2022/
https://www.digi-capital.com/news/2018/01/ubiquitous-90-billion-ar-to-dominate-focused-15-billion-vr-by-2022/
https://www.digi-capital.com/news/2018/01/ubiquitous-90-billion-ar-to-dominate-focused-15-billion-vr-by-2022/
https://www.forbes.com/sites/charliefink/2017/11/20/the-trillion-dollar-3d-telepresence-gold-mine/#42b8f0a12a72
https://www.forbes.com/sites/charliefink/2017/11/20/the-trillion-dollar-3d-telepresence-gold-mine/#42b8f0a12a72
https://www.forbes.com/sites/charliefink/2017/11/20/the-trillion-dollar-3d-telepresence-gold-mine/#42b8f0a12a72
https://mobile-ar.reality.news/news/apple-ar-upcoming-game-easily-shows-you-master-paintball-0179651/
https://mobile-ar.reality.news/news/apple-ar-upcoming-game-easily-shows-you-master-paintball-0179651/
https://mobile-ar.reality.news/news/apple-ar-upcoming-game-easily-shows-you-master-paintball-0179651/
https://www.microsoft.com/microsoft-hololens/en-us
https://www.microsoft.com/microsoft-hololens/en-us
https://bit.ly/2N5Dt2S
https://www.magicleap.com/#/home
https://techcrunch.com/2017/10/08/jeff-koons-augmented-reality-snapchat-artwork-gets-vandalized/
https://techcrunch.com/2017/10/08/jeff-koons-augmented-reality-snapchat-artwork-gets-vandalized/
https://techcrunch.com/2017/10/08/jeff-koons-augmented-reality-snapchat-artwork-gets-vandalized/
https://devcenter.metavision.com/design/spatial-interface-design-principles-public-by-default
https://devcenter.metavision.com/design/spatial-interface-design-principles-public-by-default
https://devcenter.metavision.com/design/spatial-interface-design-principles-public-by-default
https://www.metavision.com/
https://docs.microsoft.com/en-us/windows/mixed-reality/hologram-stability
https://docs.microsoft.com/en-us/windows/mixed-reality/hologram-stability
https://docs.microsoft.com/en-us/windows/mixed-reality/hologram-stability
https://developer.microsoft.com/en-us/windows/mixed-reality/shared_experiences_in_mixed_reality
https://developer.microsoft.com/en-us/windows/mixed-reality/shared_experiences_in_mixed_reality
https://developer.microsoft.com/en-us/windows/mixed-reality/shared_experiences_in_mixed_reality

[51] K. Rematas, I. Kemelmacher-Shlizerman, B. Curless, and
S. Seitz. Soccer on your tabletop. In CVPR, 2018.

[52] F. Roesner, T. Kohno, and D. Molnar. Security and privacy
for augmented reality systems. Communications of the ACM,
57(4):88–96, 2014.

[53] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang,
and C. Cowan. User-driven access control: Rethinking per-
mission granting in modern operating systems. In IEEE Sym-
posium on Security and Privacy, 2012.

[54] F. Roesner, D. Molnar, A. Moshchuk, T. Kohno, and H. J.
Wang. World-driven access control for continuous sensing.
In ACM CCS, 2014.

[55] N. Sastry, U. Shankar, and D. Wagner. Secure verification of
location claims. In WiSe, pages 1–10, 2003.

[56] F. Schaub, R. Deyhle, and M. Weber. Password entry usabil-
ity and shoulder surfing susceptibility on different smartphone
platforms. In MUM, 2012.

[57] S. D. Scott, M. S. T. Carpendale, and K. M. Inkpen. Territori-
ality in collaborative tabletop workspaces. In CSCW, 2004.

[58] S. D. Scott, K. D. Grant, and R. L. Mandryk. System guide-
lines for co-located, collaborative work on a tabletop display.
In ECSCW, 2003.

[59] C. Shen, K. Everitt, and K. Ryall. Ubitable: Impromptu face-
to-face collaboration on horizontal interactive surfaces. In
UbiComp, 2003.

[60] I. Sluganovic, M. Serbec, A. Derek, and I. Martinovic.
HoloPair: Securing shared augmented reality using Microsoft
HoloLens. In ACSAC 2017, 2017.

[61] I. E. Sutherland. A head-mounted three-dimensional display.
In Fall Joint Computer Conference, American Federation of
Information Processing Societies, 1968.

[62] Z. Szalavári, E. Eckstein, and M. Gervautz. Collaborative
gaming in augmented reality. In VRST, 1998.

[63] D. Takahashi. Spatial raises $8 million for aug-
mented reality collaboration platform, Oct. 2018.
https://venturebeat.com/2018/10/24/spatial-
raises-8-million-for-augmented-reality-

collaboration-platform/.

[64] F. Tari, A. Ant Ozok, and S. Holden. A comparison of per-
ceived and real shoulder-surfing risks between alphanumeric
and graphical passwords. In SOUPS, 2006.

[65] R. Templeman, M. Korayem, D. Crandall, and A. Kapadia.
PlaceAvoider: Steering first-person cameras away from sensi-
tive spaces. In NDSS, 2014.

[66] R. Tilton. Daydream Labs: positive social ex-
periences in VR. Google, Aug. 2016. https:

//www.blog.google/products/google-vr/daydream-
labs-positive-social/.

[67] Ubiquity6. https://ubiquity6.com.

[68] L. Wang, D. Wijesekera, and S. Jajodia. A logic-based frame-
work for attribute based access control. In FMSE, 2004.

[69] X. Wang, A. Pande, J. Zhu, and P. Mohapatra. STAMP: En-
abling privacy-preserving location proofs for mobile users.
IEEE/ACM ToN, 24(6):3276–3289, 2016.

[70] P. Wijesekera, A. Baokar, L. Tsai, J. Reardon, S. Egelman,
D. Wagner, and K. Beznosov. The feasibility of dynamically
granted permissions: Aligning mobile privacy with user pref-
erences. In IEEE Symposium on Security and Privacy, 2017.

[71] M. Wu and R. Balakrishnan. Multi-finger and whole hand ges-
tural interaction techniques for multi-user tabletop displays.
In UIST, 2003.

[72] Y. Xu, M. Gandy, S. Deen, B. Schrank, K. Spreen, M. Gorb-
sky, T. White, E. Barba, I. Radu, J. Bolter, and B. MacIn-
tyre. Bragfish: Exploring physical and social interaction in
co-located handheld augmented reality games. In ACE, 2008.

[73] F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu. ViewDroid:
Towards obfuscation-resilient mobile application repackaging
detection. In WiSec, 2014.

[74] W. Zhou, X. Zhang, and X. Jiang. AppInk: Watermarking
Android apps for repackaging deterrence. In ASIA CCS, 2013.

[75] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting repack-
aged smartphone applications in third-party Android market-
places. In CODASPY, 2012.

A Prototype Application Descriptions
In Section 6.1, we describe our assessment of our design’s
functionality by its ability to flexibly support our representa-
tive case study apps. Here, we provide further details on our
implemented prototype case study apps.

Paintball. This is a minimalist implementation of the Paint-
ball case study. Players can launch red spheres that, upon
contact with another player, attach to that other player. All
users in the game session can see all of the red spheres. For
the purposes of the prototype, we leave out scorekeeping and
more advanced game features.

Doc Edit. This is a basic version of Multi-Team Whiteboards
in which each user accessing content has a personal instanti-
ation of it. Users, by interacting with a simple control panel,
create flat rectangular boxes as documents. Documents are
location-decoupled, and though they are private and ghosted
by default, users can choose to share individual documents
with individual users. A user can also turn a document red,
modifying the document’s contents in a way that ghost doc-
uments do not display (for the prototype, this emulates arbi-
trary content entry, which we do not implement); the user can
also delete the document in a group-extended way (i.e., all
other users’ instances of the document are also deleted).

Cubist Art. This is a simplified version of the Community
Art case study. Rather than making and manipulating arbi-
trary objects, users create and control cubes and can choose
to share them or not. Although many of the user’s possible
actions via the control panel are similar to those of Doc Edit,
there are several key differences: (1) Cubes are public by de-
fault rather than private. (2) Cubes are shared in a location-
coupled way rather than location-decoupled. (3) Cubes obey
real-world physics instead of being entirely script-controlled.
(4) Object deletion is global location-coupled rather than

USENIX Association 28th USENIX Security Symposium 157

https://venturebeat.com/2018/10/24/spatial-raises-8-million-for-augmented-reality-collaboration-platform/
https://venturebeat.com/2018/10/24/spatial-raises-8-million-for-augmented-reality-collaboration-platform/
https://venturebeat.com/2018/10/24/spatial-raises-8-million-for-augmented-reality-collaboration-platform/
https://www.blog.google/products/google-vr/daydream-labs-positive-social/
https://www.blog.google/products/google-vr/daydream-labs-positive-social/
https://www.blog.google/products/google-vr/daydream-labs-positive-social/
https://ubiquity6.com

global location-independent (note, though, that the seman-
tics of location-coupled sharing make these two cases visu-
ally equivalent for solely location-coupled objects).

We did not implement the Soccer Arena case study, since
it does not surface new security, privacy, or functionality re-
quirements not covered by the other case studies. Section 2
provides further analysis.

B Interaction with Existing Design Recom-
mendations

Below we include a further analysis of our module’s compat-
ibility with existing design recommendations.

How are they sharing? The HoloLens guidelines list possi-
ble sharing scenarios as consisting of presentation, collabo-
ration, or guidance. Our design supports all of these: for in-
stance, a developer can use ShareAR to set appropriate con-
trols such as view-only permissions when a presenter shares
content with an audience. Besides the opt-in scenarios that
the HoloLens guidelines describe, our design also supports
opt-out public content sharing, which we argue should be
treated as another important use case for AR.

What is the group size? The HoloLens guidelines remind
developers to design for as many users as needed. Our design
can support an arbitrary number of users. (In practice, our
implementation stores both object IDs and user IDs as 32-bit
integers, providing a generous upper bound on its capacity.
We examine performance questions in Section 6.3.)

When are they sharing? The HoloLens guidelines ask
whether sharing is asynchronous or synchronous. Although
we explicitly design ShareAR to support real-time sharing,
we do not preclude the possibility of asynchronous sharing.
A developer could, for instance, write a replacement network
shim layer that relies on a central server for data storage and
periodically queries the server for updates.

What devices are they using? In particular, the HoloLens
guidelines ask whether AR users might share content with
VR users. Although this is outside the scope of this work, we
note that there is nothing in principle that fundamentally pre-
vents developers from extending our work into VR as well.
More broadly, we note that in principle, the ShareAR design
is compatible across any AR HMD platforms that satisfy ba-
sic assumptions such as a shared notion of 3D space. (Our
implementation is built for the HoloLens and has not been
ported to other platforms as of this writing.)

Clip planes near user. HoloLens recommends setting a
“plane clipping” distance of 0.85 m so that a user does not
see any portions of AR objects that are closer than that in
the user’s field of view [42]. Plane clipping may conceptu-
ally be considered a partial way of enforcing personal space;
however, it only affects the view of the user whose space is
invaded, and other users still see the object as being close
to the user. ShareAR’s treatment of owned physical space

Figure 4: Timing measurements for all steps in the evaluation pro-
tocol, each from the perspective of the device initiating the step,
as the number of present users scales. Acceptance times are mea-
sured on the receiver’s device; all other times are measured on the
sharer’s device. Black dashed lines denote a corresponding base-
line Unity operation where one exists.

Figure 5: Timing measurements for all steps in the evaluation pro-
tocol, each from the perspective of the device initiating the step,
on a per-object basis as the number of objects scales. Acceptance
times are measured on the receiver’s device; all other times are
measured on the sharer’s device. Black dashed lines denote a cor-
responding baseline Unity operation where one exists.

encompasses this recommendation and is a more complete
solution. (Our implementation does not yet include personal
space; however, it does include basic plane clipping.)

Do not disturb. Meta cautions against showing the user in-
cessant notifications. Our design does not specify the user
interface: notifications from other devices are passed as an
event to the app but not displayed to the user. Thus, ShareAR
is flexible enough to support this design choice.

Public by default. This recommendation is similar in spirit
to our goal of supporting shared physical-world intuition.
Although our design does support a purely public virtual
world, we do not recommend it for all circumstances; our
ghosting mechanism maintains a basic shared-world intu-
ition while preserving a degree of privacy.

C Detailed Performance Data
Results as the number of users scales are shown in Figure 4;
results as the number of objects scales are shown in Figure 5.

158 28th USENIX Security Symposium USENIX Association

	Introduction
	Problem Formulation and Design Goals
	Case Study Applications
	Functionality Goals
	Security Goals
	Supporting Flexibility

	Threat Model and Non-Goals
	Design
	Module Design Overview
	Physical World Integration
	Private Content in Shared Physical World
	Respecting Ownership of Physical Spaces

	Implementation
	Evaluation
	Functionality Evaluation
	Security Evaluation
	Performance Evaluation

	Discussion
	Related Work
	Conclusion
	Prototype Application Descriptions
	Interaction with Existing Design Recommendations
	Detailed Performance Data

