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Computer Science and Engineering

Today’s computer users have the choice among an ever increasing variety of devices

and platforms, including desktops, tablets, smartphones, and web browsers. In addition

to these more traditional platforms, continuous sensing platforms have recently become

commercially available, including augmented reality systems like Google Glass and in-home

platforms like Xbox Kinect. Beyond built-in functionality, these platforms generally allow

users to install and/or run applications of their choice. While these untrusted applications

can provide great benefits to users, their presence also raises security and privacy risks. For

example, users may accidentally install malware that secretly sends costly premium SMS

messages, and even legitimate applications commonly leak or misuse users’ private data.

This dissertation identifies and characterizes two significant security and privacy chal-

lenges due to untrusted applications on modern client platforms. First, these platforms

often allow applications to embed content from other applications, resulting in security and

privacy implications for both the parent application and the embedded third-party content.

Second, these platforms ask users to make decisions about which permissions an application

should receive, including the ability to access the camera or the file system; unfortunately,

existing permission granting approaches are neither sufficiently usable nor secure.

This dissertation considers and tackles these two challenges — embedded third-party con-

tent and application permission granting — in the context of several modern and emerging



client platforms. On the web, we study how embedded third-party content allows web appli-

cations to track users’ browsing behaviors; our comprehensive measurement study informs

our design of new tools and defenses. In modern operating systems (such as smartphones),

we study how to secure embedded user interfaces in general, and then leverage these secu-

rity properties to enable user-driven access control, a novel permission granting approach

by which the operating system captures a user’s permission granting intent from the way

he or she naturally interacts with any application. Finally, for emerging continuous sens-

ing platforms (such as augmented reality systems) in which explicit user input is sparse

and applications rely on long-term access to sensor data, we develop world-driven access

control to allow real-world objects to explicitly specify access policies, relieving the user’s

permission granting burden. Together, these works provide a foundation for addressing two

fundamental challenges in computer security and privacy for modern and emerging client

platforms.



TABLE OF CONTENTS

Page

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 First Challenge: Embedded Third-Party Principals . . . . . . . . . . . . . . . 3

1.2 Second Challenge: Application Permission Granting . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2: Detecting and Defending Against Third-Party Tracking on the Web . 9

2.1 Motivation and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Classifying Web Tracking Behavior . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Detecting Trackers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Defenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Platform for Tracking Detection, Blocking, Measurement . . . . . . . . . . . . 42

2.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Chapter 3: User-Driven Access Control: Rethinking Permission Granting for Mod-
ern Operating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Motivation and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 State of the Art in Permission Granting . . . . . . . . . . . . . . . . . . . . . 52

3.3 Goals and Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Design: User-Driven Access Control . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

i



Chapter 4: Securing Embedded User Interfaces in Modern Operating Systems . . 90

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Motivation and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Analysis of UI Embedding Systems . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4 Security-Aware User Interface Toolkit Architecture . . . . . . . . . . . . . . . 99

4.5 The Case for Secure UIs in Android . . . . . . . . . . . . . . . . . . . . . . . 110

4.6 LayerCake: Secure Embedded UIs for Android . . . . . . . . . . . . . . . . . 112

4.7 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.8 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.10 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Chapter 5: World-Driven Access Control: Permission Granting for Continuous
Sensing Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.1 Motivation and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2 Goals and Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3 Real-World Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.4 World-Driven Access Control Design . . . . . . . . . . . . . . . . . . . . . . . 142

5.5 Passports: Policy Authenticity and Runtime Extensions . . . . . . . . . . . . 150

5.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.8 Reflections and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.9 Additional Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Chapter 6: Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

ii



LIST OF FIGURES

Figure Number Page

2.1 Case Study: Third-Party Analytics . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Case Study: Third-Party Advertising . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Case Study: Advertising Networks . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Case Study: Social Widgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Combining Behavior A and Behavior D . . . . . . . . . . . . . . . . . . . . . 23

2.6 Prevalence of Trackers on Top 500 Domains . . . . . . . . . . . . . . . . . . . 27

2.7 Tracker Prevalence on Non-Top 500 Domains . . . . . . . . . . . . . . . . . . 32

2.8 Browsing Profiles for 35 AOL Users . . . . . . . . . . . . . . . . . . . . . . . . 33

2.9 Tracker Prevalence on Top 500 Domains (3rd Party Cookies Blocked) . . . . 37

2.10 Example Social Widgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.11 Graph Visualization Add-On . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.12 Per-Tab Visualization Add-On . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.13 Blocking Dashboard Add-On . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.14 Measurement Tool Add-On . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Android Manifest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Prompts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Application Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Example Access Control Gadgets (ACGs) . . . . . . . . . . . . . . . . . . . . 59

3.6 Access Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7 Content Picking via ACGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.8 User Expectations of One-Time and Session Access . . . . . . . . . . . . . . . 78

3.9 Customization in Android UIs . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1 Principals and Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2 Layout Tree Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3 Composition Across Principals . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.4 Sample Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.5 Window Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

iii



4.6 Panning for Software Keyboard . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.7 Cropping Further Nested Activities . . . . . . . . . . . . . . . . . . . . . . . . 118

4.8 Size Conflict Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.9 Facebook Social Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.10 Embedded Pandora and Amazon Apps . . . . . . . . . . . . . . . . . . . . . . 128

5.1 Sensor Privacy Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2 World-Driven Access Control in Action . . . . . . . . . . . . . . . . . . . . . 145

5.3 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.4 Policy Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.5 Example Policy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.6 Policy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

iv



LIST OF TABLES

Table Number Page

2.1 Classification of Tracking Behavior . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Tracking Behavior by Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Effectiveness of ShareMeNot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 TrackingObserver Platforms APIs . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6 TrackingObserver Add-On Case Studies . . . . . . . . . . . . . . . . . . . . . 47

3.1 System Calls and Upcalls for Resource Monitors . . . . . . . . . . . . . . . . 68

3.2 System Calls and Upcalls for Applications . . . . . . . . . . . . . . . . . . . . 69

3.3 Relevant Browser Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Analysis of Existing Android Applications . . . . . . . . . . . . . . . . . . . . 80

3.5 Evaluation of Extensibility and Ease of Use . . . . . . . . . . . . . . . . . . . 83

4.1 Analysis of Existing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Techniques for Secure Embedded UI . . . . . . . . . . . . . . . . . . . . . . . 112

4.3 Implementation Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.1 Existing Real-World Policis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.2 Policies in Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.3 Evaluated Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.4 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

v



ACKNOWLEDGMENTS

This dissertation is the culmination of several years of work and the guidance, support,

and collaboration of many wonderful people.

First, I am incredibly grateful to my advisor, Tadayoshi Kohno, for his guidance, advice,

support, encouragement, and friendship throughout my graduate career. Yoshi has been

my greatest champion, and he has trained me in all aspects of an academic career. I have

benefited greatly from his positivity and enthusiasm, and from his willingness to always

provide guidance when I needed it or let me wander off in my own directions when I needed

that. Thanks for showing me the ropes; I hope my subsequent career will make you proud.

I am also grateful to the other members of my dissertation committee for their guidance

and support: to James Fogarty, for broadening my perspective; to Hank Levy, for his advice

and mentorship on my job search and the bigger picture; and to Andy Ko, for his valuable

feedback. Thank you also to all of my collaborators on the various parts of this dissertation:

Crispin Cowan, James Fogarty, Tadayoshi Kohno, David Molnar, Alex Moshchuk, Bryan

Parno, Chris Rovillos, Alisha Saxena, Helen Wang, and David Wetherall. I’m especially

grateful to Helen Wang for her mentorship and friendship. Many others also provided

valuable feedback and discussions along the way; it’s been a tremendous privilege working

with and learning from all of you.

I would like to thank past and current members of the UW CSE Security Lab for their

collaboration, feedback, advice, insights, humor, and friendship: Alexei Czeskis, Tamara

Denning, Iva Dermendjieva, Miro Enev, Karl Koscher, Adam Lerner, Amit Levy, Peter

Ney, Temitope Oluwafemi, Alisha Saxena, Ian Smith, Alex Takakuwa, and Paul Vines. I’m

also grateful to many other past and current members of the UW CSE department for

their feedback, advice, and fruitful discussions, especially Tom Anderson, Luis Ceze, Ray

Cheng, Gabe Cohn, Mike Ernst, Roxana Geambasu, Steve Gribble, Sidhant Gupta, Dan

vi



Halperin, Ed Lazowska, and Will Scott. Thank you to Lindsay Michimoto for general grad

school guidance and to Melody Kadenko and Lisa Merlin for their invaluable help with all

administrative things. Thanks to the entire UW CSE community for making this place my

home.

Beyond UW CSE, I am especially indebted to Doug Burger for his continued mentorship,

which began during my undergraduate years at UT Austin. Thanks for teaching me how to

do research and for continually challenging me to stretch myself; I wouldn’t be here without

you. I would also like to thank Stefan Savage for his valuable feedback and advice during

my job search, Dirk Balfanz for a valuable and interesting internship at Google, and Vitaly

Shmatikov for first introducing me to and exciting me about computer security and privacy.

Looking back farther, I’d like to thank a few outstanding early teachers who helped me

see myself as and then become a scientist: Amanda Allen, for teaching me to love learning

in elementary school; Walter Kelly, for running a science club during middle school lunch;

Stan Roux, for letting a bunch of middle schoolers run experiments in his biology lab at

UT Austin; and Mike Scott, for hooking me on computer science in my first semester of

college at UT and encouraging me to apply for the honors program. Thanks to Carl Sagan

for writing the book “Contact” with a female scientist protagonist, and thanks to my dad

for taking me to see the movie in 1996; it took me many years to realize how much that

fictional story must have helped shape my path.

I’m grateful to all of the friends who have enriched my life throughout grad school, both

within and beyond UW CSE. Thank you especially to Nicki Dell and Nell O’Rourke, for first

helping me make it through algorithms and then through the rest of grad school: you help

me balance, and I can always count on you. I’d also like to thank Artemis Ailianou, Yonatan

Bisk, Eric Bluestein, Amanda Cuellar, Eugene Chang, Iva Dermendjieva, Yaroslav Dvinov,

Tony Fader, Mark Golazeski, Dan Halperin, Pete Hornyack, Cliff Johnson, Brandon Lucia,

Nodira Khoussainova, Brenna Nowak, Kristen Reilly, Todd Schiller, and everyone else I’ve

inadvertently forgotten to list. Thanks for amazing trips around the world, dinner parties,

brunches, games nights, girls nights, ski days, happy hours; and for your unwavering support

vii



throughout my major life events, grad school struggles and successes, and job search.

Thank you to my parents, Ute and Wolfgang Roesner, for their love, support, and

encouragement throughout my entire life and education. They are fantastic role models

who have taught me to embrace challenges and seek balance. Thank you to my siblings,

Jessi and Kevin Roesner, who are also my friends: for their support, perspectives, humor,

and for giving me a home wherever they are. Thank you to my parents-in-law, Stefanie

and Gus Akselrod, for their love and support. Thanks also to my cats, Tony and Fidget,

for their (nearly) unconditional affection. And finally, a special thank you to my husband,

Greg Akselrod, for supporting me — and let’s face it, putting up with me — throughout my

graduate career, and for accompanying me on many adventures. This is our part of the

timelapse.

My graduate career and the work described in this dissertation were supported in part

by a Microsoft Research PhD Fellowship, a National Science Foundation (NSF) Graduate

Research Fellowship under Grant DGE-0718124, and a Marilyn Fries Endowed Regental

Fellowship; as well as by NSF Awards CNS-0722000, CNS-0846065, CNS-0917341, and IIS-

1053868, by the Defense Advanced Research Projects Agency (DARPA) under contract

FA8750-12-2-0107, by an Alfred P. Sloan Research Fellowship, and by a gift from Google.

viii



DEDICATION

To my parents, Ute and Wolfgang Roesner, and to my husband, Greg Akselrod,

for their continued support of my education and career.

ix





1

Chapter 1

INTRODUCTION

Today’s computer users have the choice among an ever increasing variety of devices

and platforms, including desktops, tablets, smartphones, and web browsers. In addition

to these more traditional platforms, continuous sensing platforms have recently become

commercially available, including augmented reality systems like Google Glass and in-home

platforms like Xbox Kinect. Beyond built-in functionality, these platforms generally allow

users to install and/or run applications of their choice.

While applications on these platforms provide great benefits in the common case —

including social networking, photo editing and sharing, GPS-based maps and directions,

and health sensing — their presence also raises security and privacy risks. For example,

smartphone malware has been on the rise [155], often appearing as compromised versions of

legitimate applications [13]. These trojans may request more permissions than the original

applications, but users have been trained to click through permission-granting dialogs rather

than choosing not to install an application that they wish to use [118]; users are further

desensitized by the fact that applications often request more permissions than needed [15,

49]. In other cases, violations of user privacy occur entirely without the user’s knowledge or

consent: mobile and web applications routinely leak or misuse users’ private data [30, 42, 78],

often with the goal of tracking users for the purposes of targeted advertising and similar.

The work presented in this dissertation characterizes and tackles such security and pri-

vacy issues posed by untrusted applications on key client platforms: web browsers, modern

operating systems (e.g., smartphones), and emerging continuous sensing platforms (e.g.,

augmented reality systems). These three platforms encompass a large fraction of the activ-

ities carried out by today’s computer users and represent different points in the technology

landscape, allowing us to explore proposed solutions across their similarities and differ-

ences. Taken together, the following chapters consider two significant security and privacy
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challenges that arise in each of these platforms:

1. Embedded Third-Party Principals. First, modern web and smartphone applications

generally contain more than meets the eye: in addition to its own (first-party) con-

tent, an application often embeds visible and invisible third-party content. For exam-

ple, websites embed script or iframes providing advertisements, social media widgets

(e.g., Facebook’s “Like” or Twitter’s “tweet” button), Google search results, or maps;

smartphone applications include third-party libraries that display advertisements or

provide billing functionality. Unfortunately, embedded third-party content comes with

both privacy and security implications, as discussed further below. This dissertation

characterizes, evaluates, and addresses many of these concerns in the context of both

web (Chapter 2) and smartphone (Chapter 4) applications.

2. Application Permission Granting. Second, modern client platforms, such as smart-

phones or emerging wearable systems (like Google Glass), commonly allow users to

install and/or run potentially untrusted applications. As described in more detail

below, these platforms do not allow applications to access sensitive resources (such

as the complete file system or devices like the camera, microphone, or other sensors)

by default. Rather, they allow applications to request, and rely on users to grant,

the necessary permissions. Unfortunately, today’s permission granting models pro-

vide inadequate security and usability. This dissertation develops two new models for

permission granting that improve on existing approaches: user-driven access control

for today’s smartphone applications (Chapter 3) and world-driven access control for

emerging augmented reality and other continuous sensing applications (Chapter 5).

Together, these two challenges account for many of the risks posed by untrusted appli-

cations in modern and emerging client platforms. Though each chapter of this dissertation

concerns itself primarily with one of these challenges, both themes will recur throughout

and build on each other. The remainder of this chapter describes and provides background

for each challenge, before summarizing the contributions presented in this dissertation. By

tackling these challenges, this dissertation improves the state of the art and provides a

foundation for stronger security and privacy from untrusted client-side applications.
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1.1 First Challenge: Embedded Third-Party Principals

Modern applications consist not only of their own content, but frequently also include visible

and invisible third-party content. For example, web and smartphone applications commonly

include third-party advertisements, analytics services (e.g., Google Analytics), and social

sharing widgets (e.g., Facebook’s “Like” button or comment feed, Google’s “+1” button,

or a Twitter feed). Other examples of embeddable content include search boxes and maps.

Today’s platforms support the embedding of third-party principals in two primary ways.

First, an application can include a third-party library that runs in the execution context of

the application itself. On the web, this is done using a <script> HTML tag to reference a

JavaScript library on another domain; this method is commonly used for web analytics plat-

forms, such as Google Analytics (whose script is hosted at http://google-analytics.com).

Similarly, smartphone applications can compile in third-party libraries, such as advertising

libraries, that then run as part of the application itself.

The web also provides a second, more isolated option for embedding content: a website

may delegate a (possibly invisible) portion of its user interface to a third party, such as

an advertisement, embedded in an iframe. The browser isolates iframes from the parent

webpage according to the same-origin policy [169], preventing the parent page and the iframe

from interacting with each other except through explicit interfaces. Such an isolated option

is not available on today’s smartphone platforms — there, third-party advertisements, for

example, are drawn by an included advertising library and not isolated in any way from the

embedding application.

Third-party embedding has security and privacy implications both for the user of an

application as well as for the application itself. First, it poses a risk to users. Though

embedded third parties are often invisible or indistinguishable to users, their presence has

privacy implications. On the web, these third parties are able to identify and collect infor-

mation about users, generally in the form of some subset of web browsing history, a practice

referred to as web tracking. On smartphones, third-party libraries commonly leak device

identification and location information to advertising and analytics servers [67].

Second, third-party embedding poses a risk to the embedding application, as well as a risk
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to the embedded content. For third-party content running in the parent application’s own

execution context, the lack of isolation puts the parent application completely at risk —

the embedded principal can exfiltrate sensitive data and abuse the parent application’s

permissions. More generally, the lack of security considerations in the user interface toolkits

of many of today’s platforms create cross-principal risks. For example, a malicious embedded

principal (such as an advertisement) may attempt to take over a larger display area than

expected. On the other hand, a malicious host may attempt to eavesdrop on input intended

for embedded content or forge a user’s intent to interact with it, either by tricking the

user (e.g., by clickjacking) or by programmatically issuing input events. A common attack

of this type is the “likejacking” attack [154], in which a host website tricks the user into

clicking on a Facebook “Like” button, thereby inadvertently linking that website to his or

her Facebook profile.

This dissertation first considers embedded third-party principals from the browser’s per-

spective in Chapter 2, which characterizes, quantifies, and proposes novel defenses for web

tracking. Chapter 4 then considers embedded third-party user interface content more gen-

erally and describes a modified version of Android (a smartphone operating system) that

securely supports third-party content embedding.

1.2 Second Challenge: Application Permission Granting

Traditional desktop operating systems treat users as distinct security principals and grant

applications nearly unrestricted resource access by virtue of installation. While applications

may be restricted to user account privileges — requiring a user action (e.g., the use of sudo,

entering a password, and/or agreeing to a privilege elevation prompt) to receive administra-

tive privileges — they can freely access global resources like the file system, the clipboard,

and devices like the camera without explicit permission from the user. The assumption is

that by installing an application, users make the decision to trust it with access to these

resources.

The emergence of the web required a new model, as users do not install web applications,

but rather browse to pages, which may arbitrarily redirect the user’s browser or update

dynamically without the user’s knowledge or explicit consent. To protect the user’s machine
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and data in other web applications, browsers run each page in an isolated environment with

limited privileges. Content from different domains is isolated according to the same-origin

policy [169], and web applications cannot access local system resources (e.g., the clipboard,

the file system, or the camera) without explicit user permission.

More recently, smartphone operating systems like iOS, Android, and Windows Phone

have emerged and adopted a similar model, isolating multiple applications from each other

and from the system itself, and granting access to sensitive resources only via explicit user

permission. Modern desktop operating systems (e.g., Windows 8) have also moved in this

direction, recognizing that the user’s choice to install an application is not sufficient to grant

that application unrestricted resource access.

From a security perspective, the restrictions placed by modern platforms on applica-

tions are an improvement over traditional desktop systems. Malicious applications can no

longer freely access system resources and user data. However, applications must sometimes

legitimately interact with each other and with system resources in order to provide their

intended and desired functionality. To enable these interactions, systems allow applications

to request permission to pierce their isolation containers.

In doing so, today’s systems employ permission granting models that still provide inad-

equate security. In particular, existing access control and permission-granting mechanisms

tend to be coarse-grained, abrasive, or inadequate. For instance, they require users to make

out-of-context, uninformed decisions at install time via manifests, or they unintelligently

prompt users to determine their intent. Because these permission-granting mechanisms are

not usable and not well-understood by users (e.g., [50, 118]), they do not adequately protect

users from malicious applications (e.g., [13, 161]).

Thus, a pressing open problem in these modern client platforms is how to allow users

to grant applications permissions to sensitive resources, e.g., to privacy- and cost-sensitive

devices like the camera or to user data residing in other applications. A key challenge,

addressed in this dissertation, is to enable such access in a way that is non-disruptive to

users while still maintaining least-privilege restrictions on applications.

This dissertation describes two novel permission granting models that are usable, least-

privilege, and generalizable across sensitive resources and across platforms. In these models,
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the trusted platform extracts access control decisions from the user’s natural interaction

with the system and its applications (in user-driven access control, Chapter 3) or from

the real-world context surrounding the user and her device (in world-driven access control,

Chapter 5). Our techniques allow the system to make access control decisions aligned with

the user’s intent and expectations, without being overly permissive, and without continu-

ously asking the user to make explicit, low-level access control decisions.

1.3 Contributions

This dissertation makes the following contributions with respect to these two challenges —

embedded third-party principals and application permission granting — spanning a variety

of modern and emerging client platforms:

Detecting and defending against third-party tracking on the web. Chapter 2

explores how embedded third-party principals on websites enable third-party web tracking,

the practice by which websites re-identify users and collect information about their browsing

history. This dissertation develops a client-side method for detecting and classifying five

kinds of third-party trackers based on how they manipulate browser state, distinguishing

tracking behaviors not differentiated in prior work. We use this client-side tracking detection

method to perform the most comprehensive measurement study of web tracking in the wild

to date. Among other contributions, our measurements reveal the prevalence of “personal

trackers,” embedded third-party social media widgets (like the Facebook “Like” and Twitter

“tweet” buttons) that enable tracking by the associated social media site. This finding

informs our design of ShareMeNot, a novel defense for personal trackers. Finally, we make

our client-side tracking detection techniques available to users and other developers in the

form of TrackingObserver, our tracking detection, blocking, and measurement platform.

Rethinking permission granting in modern operating systems with user-driven

access control. Chapter 3 develops user-driven access control as a new model for per-

mission granting in modern operating systems (e.g., smartphones). Rather than asking the

user to agree to an install-time permission manifest or respond to time-of-use permission

prompts, user-driven access control builds permission granting into existing user actions in
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the context of an application. By introducing special trusted user interface elements called

access control gadgets (ACGs), we allow the operating system to extract a user’s permis-

sion granting intent from the way he or she naturally interacts with any application. For

example, to access the camera, an application embeds a system-provided camera button

(camera ACG); when the system detects that the user has clicked on this button, it grants

temporary camera access to the application. User-driven access control improves security

and better matches user expectations about permission granting than existing approaches.

Securing embedded user interfaces in modern operating systems. Securely en-

abling access control gadgets requires considering the security of embedded third-party con-

tent — to prevent, for example, a malicious host application from programmatically clicking

on a camera ACG. Chapter 4 steps back and considers more broadly the security and privacy

issues that arise with embedded third-party user interfaces. Specifically, this dissertation

explores the requirements for a system to support secure embedded user interfaces (UIs) by

systematically analyzing existing systems like browsers, smartphones, and research systems.

We develop a set of user interface toolkit techniques for supporting secure UI embedding

and concretely implement and refine these techniques in LayerCake, a modified version

of a smartphone operating system (Android). These techniques enable functionality that

is not possible to implement securely on stock Android, including advertisement libraries,

Facebook social plugins (e.g., the “Like” button), and access control gadgets.

Permission granting for continuous sensing platforms with world-driven access

control. Chapter 5 considers application permission granting in the context of emerging

continuous sensing platforms like augmented reality systems, in which applications rely

on long-term access to sensor data and explicit user input is sparse. This dissertation

introduces world-driven access control, which allows real-world objects to explicitly specify

access policies; a trusted policy module on the platform senses policies in the world and

automatically modifies each application’s “view” accordingly (for example, blocking video

frames in a sensitive location like a locker room). To convey and authenticate policies, we

introduce passports, a new kind of certificate that includes both a policy and optionally

the code for recognizing a real-world object. The world-driven access control approach
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relieves the user’s permission management burden while mediating access at the granularity

of objects rather than complete sensor streams.

Taken together, Chapters 2–5 provide a foundation for addressing two fundamental

challenges in security and privacy from untrusted applications in modern and emerging

client platforms. Chapter 6 summarizes these contributions and concludes.
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Chapter 2

DETECTING AND DEFENDING AGAINST THIRD-PARTY
TRACKING ON THE WEB

This chapter considers and tackles the first key challenge identified in Chapter 1, embed-

ded third-party principals, in the context of the web. Specifically, we consider the privacy

implications of embedded third-party content on websites, which enables the third party to

re-identify users and collect information about their browsing history, a practice known as

web tracking. While web tracking has garnered much attention in recent years, its working

remained poorly understood before the work presented in this chapter, much of which was

originally described in a 2012 paper [139]. This chapter characterizes and measures how

mainstream web tracking occurs in the wild, and then uses these findings to motivate two

tools: ShareMeNot, a new defense to prevent tracking by social media sites via widgets

while still allowing those widgets to achieve their utility goals, and TrackingObserver, a

web tracking detection, measurement, and blocking platform.

2.1 Motivation and Overview

Web tracking, the practice by which websites identify, and collect information about users —

generally in the form of some subset of web browsing history — has become a topic of

increased public debate. Before the work described in this chapter, however, the research

community’s knowledge of web tracking was piecemeal. There are many specific ways that

identifying information might be gleaned (e.g., browser fingerprinting [39], ETags [12], and

Flash cookies [153]) but little assessment of how tracking is integrated with web browsing

in practice. Further complicating the situation is that the capabilities of different trackers

depend strongly on their implementation. For instance, it is common for trackers like Google

Analytics and Doubleclick to be mentioned in the same context (e.g., [87]) even though the

former is implemented so that it cannot use unique identifiers to track users across sites

while the latter can.



10

As the tracking arms race continues, the design of future web systems must be informed

by an understanding of how web trackers retask browser mechanisms for tracking purposes.

Our goal is thus to provide a comprehensive assessment of third-party tracking on the web

today, where a third-party tracker is defined as a website (like doubleclick.net) that

has its tracking code included or embedded in another site (like cnn.com). We focus on

third-party tracking because of its potential concern to users, who may be surprised that

a party with which they may or may not have chosen to interact is recording their online

behavior in unexpected ways. We also explicitly focus on mainstream web tracking that

uses cookies and other conventional local storage mechanisms (HTML5, Flash cookies) to

compile records of users and user behavior. This is the most prevalent form of tracking today.

More esoteric forms of tracking do exist — such as tracking with Etags [12], visited link

coloring [77], and via the cache — and would threaten privacy if widely deployed, but they

are not commonly used today. We similarly exclude inference-based browser and machine

fingerprinting techniques [3, 39, 122, 179], commonly used for online fraud detection [164,

168], in favor of explicit tracking that pinpoints users with browser state.

Our approach is to detect tracking as it is observed by clients; we achieve this goal

by integrating web tracking detection directly into the browser. We began by looking at

how real tracker code interacts with browsers, and from there distill five distinct behavior

types. In our system, we are able to distinguish these different sets of behaviors, for example

classifying Google Analytics and Doubleclick as distinct.

We then developed a Firefox browser extension, TrackingTracker, to measure the preva-

lence of different web trackers and tracking behaviors. We later refined and extended Track-

ingTracker into a browser-based tracking detection platform, TrackingObserver, which we

released publicly. We aimed our tool at the 500 most popular and 500 less popular web-

sites according to the Alexa rankings, as well as real user workloads as approximated with

web traces generated from publicly available AOL search logs. Our measurements reveal

extensive tracking. Pages are commonly watched by more than one of the over 500 unique

trackers we found. These trackers exhibit a variety of nondeterministic behaviors, includ-

ing hierarchies in which one tracker hands off to another. Several trackers have sufficient

penetration that they may capture a large fraction of a user’s browsing activity.
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Our method also allowed us to assess how today’s defenses reduce web tracking. We

found that popup blocking, third-party cookie blocking and the Do Not Track header

thwarted a large portion of cookie-based tracking without impacting functionality in most

browsers, with the exception of tracking by social media widgets. Disabling JavaScript is

more effective but can significantly impact the browsing experience. Tracking by social

media widgets (e.g., Facebook’s “Like” button) has rapidly grown in coverage and high-

lights how unanticipated combinations of browser mechanisms can have unexpected effects.

Informed by our understanding of this kind of tracking, as well as the inadequacy of exist-

ing solutions, we developed and released the ShareMeNot browser extension to successfully

defend against it while still allowing users to interact with the widgets.

To summarize, we make several contributions. Our classification of tracking behaviors is

new, and goes beyond simple notions of first- and third-party tracking. Our measurements

of deployed web trackers and how much they track users give the most detailed account

of which we are aware to date of tracking in the wild, as well as an assessment of the

efficacy of common defenses. Our ShareMeNot browser extension provides a new defense

against a practical threat. Finally, we extend and release our measurement tool in the form

of TrackingObserver, a browser-based web tracking detection, measurement, and blocking

platform. We now turn to additional background information in Section 2.2.

2.2 Background

Third-party web tracking refers to the practice by which an entity (the tracker), other

than the website directly visited by the user (the site), tracks or assists in tracking the

user’s visit to the site. For instance, if a user visits cnn.com, a third-party tracker like

doubleclick.net— embedded by cnn.com to provide, for example, targeted advertising —

can log the user’s visit to cnn.com. For most types of third-party tracking, the tracker will

be able to link the user’s visit to cnn.com with the user’s visit to other sites on which the

tracker is also embedded. We refer to the resulting set of sites as the tracker’s browsing

profile for that user. Before diving into the mechanisms of third-party tracking, we briefly

review necessary web-related background.
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2.2.1 Web-Related Background

Page fetching. When a page is fetched by the browser, an HTTP request is made to the

site for a URL in a new top-level execution context for that site (that corresponds to a user-

visible window with a site title). The HTTP response contains resources of several kinds

(HTML, scripts, images, stylesheets, and others) that are processed for display and which

may trigger HTTP requests for additional resources. This process continues recursively

until loading is complete.

Execution context. A website can embed content from another domain in two ways. The

first is the inclusion of an iframe, which delegates a portion of the screen to the domain from

which the iframe is sourced — this is considered the third-party domain. The same-origin

policy ensures that content from the two domains is isolated: any scripts running in the

iframe run in the context of the third-party domain. By contrast, when a page includes a

script from another domain (using <script src=...>), that script runs in the domain of

the embedding page (the first-party domain), not in that of the script’s source.

Client-side storage. Web tracking relies fundamentally on a website’s ability to store

state on the user’s machine — as do most functions of today’s web. Client-side state may

take many forms, most commonly traditional browser cookies. A cookie is a triple (domain,

key, value) that is stored in the browser across page visits, where domain is a web site,

and key and value are opaque identifiers. Cookies that are set by the domain that the user

visits directly (the domain displayed in the browser’s address bar) are known as first-party

cookies; cookies that are set by some other domain embedded in the top-level page are

third-party cookies.

Cookies are set either by scripts running in the page using an API call, or by HTTP

responses that include a Set-Cookie header. The browser automatically attaches cookies

for a domain to outgoing HTTP requests to that domain, using Cookie headers. Cookies

may also be retrieved using an API call by scripts running in the page and then sent via

any channel, such as part of an HTTP request (e.g., as part of the URL). The same-origin

policy ensures that cookies (and other client-side state) set by one domain cannot be directly
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accessed by another domain.

Users may choose to block cookies via their browser’s settings menu. Blocking all cookies

is uncommon,1 as it makes today’s web almost unusable (e.g., the user cannot log into any

account), but blocking third-party cookies is commonly recommended as a first line of

defense against third-party tracking.

In addition to traditional cookies, HTML5 introduced new client-side storage mecha-

nisms for browsers. In particular, LocalStorage provides a persistent storage area that sites

can access with API calls, isolated by the same-origin policy. Plugins like Flash are another

mechanism by which websites can store data on the user’s machine. In the case of Flash,

websites can set Local Storage Objects (LSOs, also referred to as “Flash cookies”) on the

user’s file system.

2.2.2 Background on Tracking

Web tracking is highly prevalent on the web today. From the perspective of website owners

and of trackers, it provides desirable functionality, including personalization, site analytics,

and targeted advertising. A recent study [55] claims that the negative economic impact of

preventing targeted advertising — or the underlying tracking mechanisms that enable it — is

significant. From the perspective of a tracker, the larger a browsing profile it can gather

about a user, the better service it can provide to its customers (the embedding websites)

and to the user herself (e.g., in the form of personalization).

From the perspective of users, however, larger browsing profiles spell greater loss of

privacy. A user may not, for instance, wish to link the articles he or she views on a news

site with the type of adult sites he or she visits, much less reveal this information to an

unknown third party. Even if the user is not worried about the particular third party, this

data may later be revealed to unanticipated parties through court orders or subpoenas.

Despite the prevalence of tracking and the resulting public and media outcry — primarily

in the United States and in Europe — there is a lack of clarity about how tracking works,

1On May 22, 2014, the Gibson Research Corporation cookie statistics page (http://www.grc.com/
cookies/stats.htm) showed that almost 100% of 52,029 unique visitors in the previous week had first-
party cookies enabled. Earlier measurements, during the original execution of this work in 2011, showed
similar results.
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how widespread the practice is, and the scope of the browsing profiles that trackers can

collect about users. Tracking is often invisible; tools like the Ghostery Firefox add-on2 aim

to provide users with insight into the trackers they encounter on the web. What these tools

do not consider, however, are the differences between types of trackers, their capabilities,

and the resulting scope of the browsing profiles they can compile. For example, Google

Analytics is commonly considered to be one of the most prominent trackers. However, it

does not have the ability to create cross-site browsing profiles using the unique identifiers

in its cookies. Thus, its prevalence is not correlated with the size of the browsing profiles it

creates.

Storage and communication. Our study focuses on explicit tracking mechanisms —

tracking mechanisms that use assigned, unique identifiers per user — rather than inferred

tracking based on browser and machine fingerprinting. Other work (e.g., [122, 179]) has

studied the use of fingerprinting to pinpoint a host with high accuracy. More specifically,

all trackers we consider have two key capabilities:

1. The ability to store a pseudonym (unique identifier) on the user’s machine.

2. The ability to communicate that pseudonym, as well as visited sites, back to the

tracker’s domain.

The pseudonym may be stored using any of the client-side storage mechanisms described

in Section 2.2.1 — in a conventional browser cookie, in HTML5 LocalStorage, and in Flash

LSOs, as well as in more exotic locations such as in ETags. There are multiple ways in

which the browser may communicate information about the visited site to the tracker, e.g.,

implicitly via the HTTP Referrer header or explicitly via tracker-provided JavaScript code

that directly transmits the results of an document.referrer API call. In some cases, a

script running within a page might even communicate the visited page information in the

GET or POST parameters of a request to a tracker’s domain. For example, a tracker

embedded on a site might access its own cookie and the referring page, and then pass this

information on to another tracker with a URL of the form http://tracker2.com/track?

cookie_value=123&site=site.com.

2http://www.ghostery.com
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Different scales of tracking. Depending on the behaviors exhibited and mechanisms used

by a tracker, the browsing profiles it compiles can be within-site or cross-site. Within-site

browsing profiles link the user’s browsing activity on one site with his or her other activity

only on that site, including repeat visits and how the website is traversed, but not to visits

to any other site. Cross-site browsing profiles link visits to multiple different websites to a

given user (identified by a unique identifier or linked by another technique [85, 179]).

Behavioral methodology. In this paper, we consider tracking behavior that is observable

from the client, that is, from the user’s browser. Thus, we do not distinguish between “can

track” and “does track” — that is, we analyze trackers according to the capabilities granted

by the behaviors we observe and not, for example, the privacy policies of the tracking sites.

From the background that we have introduced in this section, we step back and consider,

via archetypical examples, the set of properties exhibited by trackers (Section 2.3.1); from

these properties we formulate a classification of tracking behavior in Section 2.3.2.

2.3 Classifying Web Tracking Behavior

All web trackers that use unique identifiers are often bundled into the same category. How-

ever, in actuality diverse mechanisms are used by trackers, resulting in fundamentally dif-

ferent tracking capabilities. Our observations, based both on manual investigations and

automated measurements, lead us to believe that it is incorrect to bundle together different

classes of trackers — for example, Google Analytics is a within-site tracker, while Doubleclick

is a cross-site tracker. To rigorously evaluate the tracking ecosystem, we need a framework

for differentiating different tracker types. We develop such a framework here (Section 2.3.2).

To inform this framework, we first dive deeply into an investigatory analysis of how tracking

occurs today (Section 2.3.1), where we identify different properties of different trackers. We

use our resulting framework as the basis for our measurements in Section 2.4.

2.3.1 Investigating Tracking Properties

In order to understand patterns of tracking behavior, we must first understand the properties

of different trackers. We present several archetypal tracking examples here and, from each,
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Figure 2.1: Case Study: Third-Party Analytics. Websites commonly use third-party

analytics engines like Google Analytics (GA) to track visitors. This process involves (1) the

website embedding the GA script, which, after (2) loading in the user’s browser, (3) sets a

site-owned cookie. This cookie is (4) communicated back to GA along with other tracking

information.

extract a set of core properties.

Throughout this discussion, we will refer to cookies set under a tracker’s domain as

tracker-owned cookies. We introduce this term rather than using “third-party cookies”

because a given cookie can be considered a first-party or a third-party cookie depending on

the current browsing context. (For example, Facebook’s cookie is a first-party cookie when

the user visits facebook.com, but it is a third-party cookie when a Facebook “Like” button

is embedded on another webpage.) Similarly, a cookie set under the domain of the website

embedding a tracker is a site-owned cookie.

Third-Party Analytics

For websites that wish to analyze traffic, it has become common to use a third-party ana-

lytics engine such as Google Analytics (GA) in lieu of collecting the data and performing

the analysis themselves. The webpage directly visited by the user includes a library (in the

form of a script) provided by the analytics engine on pages on which it wishes to track users

(see Figure 2.1).

To track repeat visitors, the GA script sets a cookie on the user’s browser that contains a

unique identifier. Since the script runs in the page’s own context, the resulting cookie is site-
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owned, not tracker-owned. The GA script transfers this identifier to google-analytics.com

by making explicit requests that include custom parameters in the URL containing informa-

tion like the embedding site, the user identifier (from the cookie), and system information

(operating system, browser, screen resolution, geographic information, etc.).

Because the identifying cookie is site-owned, identifiers set by Google Analytics across

different sites are different. Thus, the user will be associated with a different pseudonym

on the two sites, limiting Google Analytics’s ability to create a cross-site browsing profile

for that user.

Tracker properties. We extract the following set of properties defining trackers like

Google Analytics:

1. The tracker’s script, running in the context of the site, sets a site-owned cookie.

2. The tracker’s script explicitly leaks the site-owned cookie in the parameters of a request

to the tracker’s domain, circumventing the same-origin policy.

Third-Party Advertising

The type of tracking most commonly understood under “third-party tracking” is tracking

for the purpose of targeted advertising. As an example of this type of tracking scenario, we

consider Google’s advertising network, Doubleclick. Figure 2.2 shows an overview of this

scenario.

When a page like site1.com is rendered on the user’s browser, Doubleclick’s code will

choose an ad to display on the page, e.g., as an image or as an iframe. This ad is hosted by

doubleclick.net, not by the embedding page (site1.com). Thus, the cookie that is set

as the result of this interaction (again containing a unique identifier for the user) is tracker-

owned. As a result, the same unique identifier is associated with the user whenever any

site embeds a Doubleclick ad, allowing Doubleclick to create a cross-site browsing profile

for that user.

Tracker properties. We extract the following properties defining trackers like Doubleclick:

1. The tracker sets a tracker-owned cookie, which is then automatically included with

any requests to the tracker’s domain.
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Figure 2.2: Case Study: Third-Party Advertising. When a website (1) includes a

third-party ad from an entity like Doubleclick, Doubleclick (2-3) sets a tracker-owned cookie

on the user’s browser. Subsequent requests to Doubleclick from any website will include

that cookie, allowing it to track the user across those sites.

2. The tracker-owned cookie is set by the tracker in a third-party position — that is, the

user never visits the tracker’s domain directly.

Third-Party Advertising with Popups

A commonly recommended first line of defense against third-party tracking like that done by

Doubleclick is third-party cookie blocking. However, in most browsers, third-party cookie

blocking applies only to the setting, not to the sending, of cookies (in Firefox, it applies to

both). Thus, if a tracker is able to maneuver itself into a position from which it can set a

first-party cookie, it can avoid the third-party cookie blocking defense entirely.

We observed this behavior from a number of trackers, such as insightexpressai.com,

which opens a popup window when users visit weather.com. While popup windows have

other benefits for advertising (e.g., better capturing a user’s attention), they also put the

tracker into a first-party position without the user’s consent. From there, the tracker sets

and reads first-party cookies, remaining unaffected by third-party cookie blocking.

Tracker properties. We extract the following properties defining trackers like Insight

Express:

1. The tracker forces the user to visit its domain directly, e.g., with a popup or a redirect,

allowing it to set its tracker-owned cookie from a first-party position.

2. The tracker sets a tracker-owned cookie, which is then automatically included with
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Figure 2.3: Case Study: Advertising Networks. As in the ordinary third-party ad-

vertising case, a website (1-2) embeds an ad from Admeld, which (3) sets a tracker-owned

cookie. Admeld then (4) makes a request to another third-party advertiser, Turn, and

passes its own tracker-owned cookie value and other tracking information to it. This allows

Turn to track the user across sites on which Admeld makes this request, without needed to

set its own tracker-owned state.

any requests to the tracker’s domain when allowed by the browser.

Third-Party Advertising Networks

While, from our perspective, we have limited insights into the business models of third-party

advertisers and other trackers, we can observe the effects of complex business relationships

in the requests to third-parties made by the browser. In particular, trackers often cooperate,

and it is insufficient to simply consider trackers in isolation.

As depicted in Figure 2.3, a website may embed one third-party tracker, which in turn

serves as an aggregator for a number of other third-party trackers. We observed this behavior

to be common among advertising networks. For example, admeld.com is often embedded by

websites, and it makes further requests to trackers like turn.com and invitemedia.com. In

these requests, admeld.com includes the information necessary to track the user, including

the top-level page and the pseudonym from admeld.com’s own tracker-owned cookie. This

means that turn.com does not need to set its own client-side state, but rather can rely

entirely on admeld.com.
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Figure 2.4: Case Study: Social Widgets. Social sites like Facebook, which users visit

directly in other circumstances — allowing them to (1) set a cookie identifying the user —

expose social widgets such as the “Like” button. When another website embeds such a

button, the request to Facebook to render the button (2-3) includes Facebook’s tracker-

owned cookie. This allows Facebook to track the user across any site that embeds such a

button.

Tracker properties. We extract the following properties defining trackers of this type:

1. The tracker is not embedded by the first-party website directly, but referred to by

another tracker on that site.

2. The tracker relies on information passed to it in a request by the cooperating tracker.

Third-Party Social Widgets

An additional class of trackers doubles as sites that users otherwise visit intentionally, and

often have an account with. Many of these sites, primarily social networking sites, expose

social widgets like the Facebook “Like” button, the Twitter “tweet” button, the Google

“+1” button and others. These widgets can be included by websites to allow users logged

in to these social networking sites to like, tweet, or +1 the embedding webpage.

Figure 2.4 overviews the interaction between Facebook, a site embedding a “Like” but-

ton, and the user’s browser. The requests made to facebook.com to render this button

allow Facebook to track the user across sites just as Doubleclick can — though note that

unlike Doubleclick, Facebook sets its tracker-owned cookie from a first-party position when

the user voluntarily visits facebook.com.
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Category Name Profile Scope Summary Example Visit Directly?

A Analytics Within-Site Serves as third-party
analytics engine for
sites.

Google Analytics No

B Vanilla Cross-Site Uses third-party stor-
age to track users
across sites.

Doubleclick No

C Forced Cross-Site Forces user to visit di-
rectly (e.g., via popup
or redirect).

InsightExpress Yes (forced)

D Referred Cross-Site Relies on a B, C, or E
tracker to leak unique
identifiers.

Invite Media No

E Personal Cross-Site Visited directly by the
user in other contexts.

Facebook Yes

Table 2.1: Classification of Tracking Behavior. Trackers may exhibit multiple behaviors

at once, with the exception of Behaviors B and E, which depend fundamentally on a user’s

browsing behavior: either the user visits the tracker’s site directly or not.

Tracker properties. We extract the following set of properties, where the important

distinction to the Doubleclick scenario is the second property:

1. The tracker makes use of a tracker-owned cookies.

2. The user voluntarily visits the tracker’s domain directly, allowing it to set the tracker-

owned cookie from a first-party position.

2.3.2 A Classification Framework

We now present a classification framework for web trackers based on observable behaviors.

This is in contrast to past work that considered business relationships between trackers and

the embedding website rather than observable behaviors [74] and past work that categorized

trackers based on prevalence rather than user browsing profile size, thereby commingling

within-site and cross-site tracking [87]. In particular, from our manual investigations we

distilled five tracking behavior types; we summarize these behaviors below and in Table 2.1.

Table 2.2 captures the key properties from Section 2.3.1 and their relationships to these

behavioral categories. In order to fall into a particular behavior category, the tracker must

exhibit (at least) all of the properties indicated for that category in Table 2.2. A single
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Behavior
Property A B C D E

Tracker sets site-owned (first-party) state. X
Request to tracker leaks site-owned state. X
Third-party request to tracker includes tracker-owned state. X X X
Tracker sets its state from third-party position; user never directly visits tracker. X
Tracker forces user to visit it directly. X
Relies on request from another B, C, or E tracker (not from the site itself). X
User voluntarily visits tracker directly. X

Table 2.2: Tracking Behavior by Mechanism. In order for a tracker to be classified

as having a particular behavior (A, B, C, D, or E), it must display the indicated property.

Note that a particular tracker may exhibit more than one of these behaviors at once.

tracker may exhibit more than one of these behaviors, as we discuss in more detail below.

1. Behavior A (Analytics): The tracker serves as a third-party analytics engine for

sites. It can only track users within sites.

2. Behavior B (Vanilla): The tracker uses third-party storage that it can get and set

only from a third-party position to track users across sites.

3. Behavior C (Forced): The cross-site tracker forces users to visit its domain directly

(e.g., popup, redirect), placing it in a first-party position.

4. Behavior D (Referred): The tracker relies on a B, C, or E tracker to leak unique

identifiers to it, rather than on its own client-side state, to track users across sites.

5. Behavior E (Personal): The cross-site tracker is visited by the user directly in other

contexts.

This classification is based entirely on tracker behavior that can be observed from the

client side. Thus, it does not capture backend tracking behavior, such as correlating a user’s

browsing behavior using browser and machine fingerprinting techniques, or the backend

exchange of data among trackers. Similarly, the effective type of a tracker encountered by

a user depends on the user’s own browsing behavior. In particular, the distinction between

Behavior B and Behavior E depends on whether or not the user ever directly visits the

tracker’s domain.
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Figure 2.5: Combining Behavior A and Behavior D. When a Behavior A tracker like

Google Analytics is embedded by another third-party tracker, rather than by the visited

website itself, Behavior D emerges. The site-owned cookie that GA sets on tracker.com

becomes a tracker-owned cookie when tracker.com is embedded on site1.com. The tracker

then passes this identifier to Google Analytics, which gains the ability to track the user across

all sites on which tracker.com is embedded.

Combining behaviors. Most of these behaviors are not mutually exclusive, with the

exception of Behavior B (Vanilla) and Behavior E (Personal) — either the user directly visits

the tracker’s domain at some point or not. That is, a given tracker can exhibit different

behaviors on different sites or multiple behaviors on the same site. For example, a number

of trackers — such as quantserve.com— act as both Behavior A (Analytics) and Behavior

B (Vanilla) trackers. Thus, they provide site analytics to the embedding sites in addition to

gathering cross-site browsing profiles (for the purposes of targeted advertising or additional

analytics).

Through our analysis, we identified what was to us a surprising combination of behav-

iors — Behavior A (Analytics) and Behavior D (Referred) — by which a within-site tracker

unintentionally gains cross-site tracking capabilities. We discovered this combination during

our measurement study. For example, recall that Google Analytics is a within-site, not a

cross-site, tracker (Behavior A). However, suppose that tracker.com uses Google Analytics

for its own on-site analytics, thus receiving a site-owned cookie with a unique identifier. If

tracker.com is further embedded on another site, this same cookie becomes a tracker-owned

cookie, which is the same across all sites on which tracker.com is embedded. Now, when the
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usual request is made to google-analytics.com from tracker.com when it is embedded,

Google Analytics becomes a Behavior D tracker — a cross-site tracker. Figure 2.5 shows an

overview of this scenario. Note that we did not observe many instances of this in practice,

but it is interesting to observe that within-site trackers can become cross-site trackers when

different parties interact in complex ways. This observation is further evidence of the fact

that the tracking ecosystem is complicated and that it is thus difficult to create simple,

sweeping technical or policy solutions.

Robustness. We stress that this classification is agnostic of the practical manifestation of

the mechanisms described above — that is, client-side storage may be done via cookies or

any other mechanism, and information may be communicated back to the tracker in any

way. This separation of semantics from mechanism makes the classification robust in the

face of the evolution of specific client-side storage techniques used by trackers.

2.4 Detecting Trackers

Based on this classification framework, we created a tool — TrackingTracker — that auto-

matically classifies trackers according to behavior observed on the client-side. Tracking-

Tracker runs as a Firefox add-on, interposes on all HTTP(S) requests, and examines con-

ventional cookies, HTML5 Local Storage, and Flash LSOs to detect and categorize trackers.

It has support for crawling a list of websites to an arbitrary link depth and for performing

a series of search engine keyword searches and visiting the top hit of the returned search

results. We used this tool to perform a series of analyses between September and October

of 2011. Though we repeated many of these measurements in November 2013, we found

that the tracking ecosystem had not substantially changed in the meantime. Thus, for the

purposes of this dissertation, we report only our 2011 findings in detail here.

In presenting the results of these measurements, we make a distinction between pages

and domains. Two pages may belong to the same domain (e.g., www.cnn.com/article1

and www.cnn.com/article2). Which we use depends on whether we are interested in the

characteristics of websites (domains) or in specific instances of tracking behavior (pages).

Note that the tracking behavior that we observe in our measurements is a lower bound,
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for several reasons. First, we do not log into any sites or click any ads or social widgets,

which we have observed in small case studies to occasionally trigger additional tracking

behavior. Second, we have observed that tracking behavior can be nondeterministic, largely

due to the interplay of Behavior B (Vanilla) and Behavior D (Referred) trackers; we generally

visit pages only twice (see below), which may not trigger all trackers embedded by a given

website.

Finally, the mere presence of a cookie (or other storage item) does not by itself give a

tracker the ability to create a browsing profile — the storage item must contain a unique

identifier. It is difficult or impossible to identify unique identifiers with complete certainty

(we do not reverse-engineer cookie strings), but we identify and remove any suspected track-

ers whose cookies or other storage contain identical values across multiple measurements

that started with a clean browser. We also remove trackers that only use session cookies,

though we note that these can equally be used for tracking as long as the browser remains

open.

2.4.1 Tracking on Popular Sites

We collected a data set using the top 500 websites (international) from Alexa as published

on September 19, 2011. We also visited four random links on each of the 500 sites that

stayed within that site’s domain. We visited and analyzed a total of 2098 unique pages for

this data set; we did not visit a full 2500 unique pages because some websites do not have

four within-domain links, some links are broken or redirect to other domains or to the same

page, etc. This process was repeated twice: once starting with a clean browser, and once

more after priming the cache and cookie database (i.e., without first clearing browser state).

This experimental design aims to ensure that trackers that may only set but not read state

the first time they are encountered are properly accounted for by TrackingTracker on the

second run. The results we report include tracking behavior measured only on the second

run.

Most of the 2098 pages (500 domains) embed trackers, often several. Indeed, the average

number of trackers on the 1655 pages (457 domains) that embed at least one tracker is over
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Top 500 Sites Non-Top 500 Sites
Tracker Instances Instances

Type # (Min, Max) # (Min, Max)

A 17 49 (1, 9) 10 34 (1, 18)
A B 18 152 (1, 21) 11 104 (1, 37)

A B D 1 317 (317, 317) 1 155 (155, 155)
A E 8 47 (1, 17) 2 25 (5, 20)

A E D 1 21 (21, 21) – –
A D 3 902 (1, 896) 2 908 (55, 853)

B 357 3322 (1, 375) 299 3734 (1, 777)
B C 3 79 (6, 64) – –
B D 8 703 (1, 489) 7 60 (1, 25)

E 101 1564 (1, 397) 41 1569 (1, 446)
E C 1 34 (34, 34) 1 23 (23, 23)
E D 1 1 (1, 1) 1 417 (417, 417)

C 4 4 (1, 1) 4 4 (1, 1)
D 1 (69, 69) 3 60 (1, 57)

Total 524 7264 (1, 896) 382 7093 (1, 853)

Popups Blocked Cookies Blocked No JavaScript DNT Enabled
Tracker Instances Instances Instances Instances

Type # (Min, Max) # (Min, Max) # (Min, Max) # (Min, Max)

A 17 34 (1, 10) 40 158 (1, 38) – – 10 39 (1, 9)
A B 20 338 (1, 123) – – – – 14 105 (1, 17)

A B D 1 319 (319, 319) – – – – 1 274 (274, 274)
A E 8 51 (1, 20) 10* 95 (1, 23) – – 6 33 (1, 17)

A E D 1 19 (19, 19) – – – – 1 18 (18, 18)
A D 2 906 (10, 896) 1 844 (844, 844) – – 2 900 (81, 819)

B 336 2859 (1, 382) 1 15 (15, 15) 161 1697 (1, 263) 320 2613 (1, 305)
B C 3 29 (3, 22) 5* 48 (2, 21) – – 6 47 (2, 15)
B D 22 1235 (1, 494) – – 2 23 (10,13) 13 1299 (3, 551)

E 101 1625 (1, 405) 96* 1509 (1, 383) 49 707 (1, 195) 100 1412 (1, 338)
E C – – – – – – 1 31 (31, 31)
E D 1 5 (5, 5) 1* 1 (1, 1) – – 1 4 (4, 4)

C – – 5 8 (1, 4) – – 7 13 (1, 4)
D 2 80 (1, 79) 1* 71 (71, 71) – – 1 42 (42, 42)

Total 514 7505 (1, 896) 160 2749 (1, 844) 212 2427 483 6830 (1, 819)

Table 2.3: Measurement Results. Each set of columns reports the results for the specified

measurement, each run with the Alexa top 500 sites except the Non-Top dataset. The

lefthand column for each set reports the number of unique trackers of each type observed;

the righthand column reports the number of occurrences of that tracker type. A value of X

(Y, Z) in that column means that X occurrences of trackers of this type were observed; the

minimum number of occurrences of any unique tracker was Y and the maximum Z. Values

with asterisks would be zero (or shifted to another type) for Firefox users, due to that

browser’s stricter third-party cookie blocking policy. Some of the variation in counts across

runs is due to the nondeterminism of tracking behavior.
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Figure 2.6: Prevalence of Trackers on Top 500 Domains. Trackers are counted on

domains, i.e., if a particular tracker appears on two pages of a domain, it is counted once.

4.5 (over 7). Of these, 1469 pages (445 domains) include at least one cross-site tracker.

Overall, we found a total of 524 unique trackers appearing a cumulative 7264 times.

Figure 2.6 shows the twenty top trackers across the 500 top domains. This graph considers

websites as domains — that is, if a given tracker was encountered on two pages of a domain,

it is only counted once in this graph. The most prevalent tracker is Google Analytics,

appearing on almost 300 of the 500 domains — recall that it is a within-site tracker, meaning

that it cannot link users’ visits across these pages using cookies. The most popular cross-

site tracker that users don’t otherwise visit directly is Doubleclick (also owned by Google),

which can track users across almost 40% of the 500 most popular sites. The most popular

Behavior E tracker (domains that are themselves in the top 500) is Facebook, followed

closely by Google, both of which are found on almost 30% of the top sites.

Recall that a tracker may exhibit different behavior across different occurrences, often

due to varying business and embedding relationships. We thus consider occurrences in addi-

tion to unique trackers; this data is reported in the first set of columns in Table 2.3. In this

table, a tracker classified as, for instance, type A B D, may exhibit different combinations

of the three behaviors at different times.
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We find that most trackers behave uniformly across occurrences. For example, the most

common tracking behaviors are Behavior B (Vanilla) and Behavior E (Personal), which

these trackers exhibit uniformly. Some trackers, however, exhibit nonuniform behavior. For

instance, sites may choose whether or not to use Quantserve for on-site analytics (Behavior

A) in addition to including it as a Behavior B (cross-site) tracker. Thus, Quantserve may

sometimes appear as Behavior A, sometimes as Behavior B, and sometimes as both. When

other trackers include Quantserve, it can also exhibit Behavior D (Referred) behavior. Sim-

ilarly, Google Analytics generally exhibits Behavior A behavior, setting site-owned state

on a site for which it provides third-party analytics. However, when a third-party tracker

uses Google Analytics itself, as described in Section 2.3.2, Google Analytics is put into the

position of a Behavior D (cross-site) tracker.

Other Storage Mechanisms

HTML5 LocalStorage. Contrary to expectations that trackers are moving away from

cookies to other storage mechanisms, we found remarkably little use of HTML5 LocalStorage

by trackers (though sites themselves may still use it for self-administered analytics). Of the

524 unique trackers we encountered on the Alexa top 500 sites, only eight of these trackers

set any LocalStorage at all. Five contained unique identifiers, two contained timestamps,

and one stored a user’s unsubmitted comments in case of accidental navigation away from

the page.

We observed both Behavior A and Behavior B behavior using LocalStorage. Notably,

we discovered that taboolasyndication.com and krxd.net set site-owned LocalStorage

instead of browser cookies for Behavior A purposes.

Of the five trackers that set unique identifiers in LocalStorage, all duplicated these

values in cookies. When the same identifier is stored in multiple locations, the possibility of

respawning is raised: if one storage location is cleared, the tracker can repopulate it with the

same value from the other storage location. Respawning has been observed several times in

the wild [12, 153] as a way to subvert a user’s intention not to be tracked and is exemplified
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by the proof-of-concept evercookie.3

We manually checked for respawning behavior in these five cases and found that one

tracker — tanx.com— indeed repopulated the browser cookies from LocalStorage when cleared.

We also noticed that twitter.com, which set a uniquely identifying “guest id” on the ma-

chines of users that are not logged in, did not repopulate the cookie value — however, it did

store in LocalStorage the entire history of guest ids, allowing the user’s new guest id to be

linked to the old one. This may not be intentional on Twitter’s part, but the capability for

tracking in this way — equivalent to respawning — exists.

We also observed reverse respawning, that is, repopulating LocalStorage from cookies

when cleared. We observed this in three of the five cases, and note that it may not be

intentional respawning but rather a function of when LocalStorage is populated (generally

after checking if a cookie is set and/or setting a cookie).

Flash storage. Flash LSOs, or “cookies”, on the other hand, are more commonly used to

store unique tracking identifiers. Nevertheless, despite media buzz about identifier respawn-

ing from Flash cookies, we find that most unique identifiers in Flash cookies do not serve as

backups to traditional cookies; only nine of the 35 trackers with unique identifiers in Flash

cookies duplicate these identifiers across Flash cookies and traditional cookies.

For these nine trackers, we tested manually for respawning behavior as described above.

We observed Flash-to-cookie respawning in six cases and cookie-to-Flash respawning in

seven.

In one interesting case, we found that while the Flash cookie for sodahead.com does

not appear to match the browser cookie, it is named enc data and may be an encrypted

version of the cookie value. Indeed, sodahead.com respawned the browser cookie from the

Flash cookie. Furthermore, the respawned cookie was a session cookie that would ordinarily

expire automatically when the browser is closed. This example demonstrates that it is not

sufficient to inspect stored values but that respawning must be determined behaviorally.

3http://samy.pl/evercookie/
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Cookie Leaks, Countries, and More

Throughout our study, we made a number of interesting non-quantitative observations; we

describe these here.

Frequent cookie leaks. We observed a large number of cookie leaks, i.e., cookies be-

longing to one domain that are included in the parameters of a request to another domain,

thereby circumventing the same-origin policy. Fundamentally, cookie leaking enables an

additional party to gain tracking capabilities that it would not otherwise have. In addition

to Behavior A leaks (the leaking of site-owned state set by the tracker’s code to the tracker

as a third-party) and Behavior D leaks (to enable additional trackers), we observed cookie

leaks indicative of business relationships between two (or few) parties.

For example, msn.com and bing.com, both owned by Microsoft, use cookie leaking mech-

anisms within the browser to share cookies with each other, even when the user does not

visit both sites as part of a contiguous browsing session. This enables Microsoft to track a

unique user across both MSN and Bing, as well as across any site that may embed one of

the two.

As another example, we noticed that when a website includes both Google AdSense

(a product that allows the average website owner to embed ads without a full-fledged

Doubleclick contract) as well as Google Analytics, the AdSense script makes requests to

Doubleclick to fetch ads. These requests include uniquely identifying values from the site’s

Google Analytics cookies. This practice gives Google the capability to directly link the

unique identifier used by Doubleclick to track the user across sites with the unique Google

Analytics identifier used to track the user’s visits to this particular site. While this does

not increase the size of the browsing profile that Doubleclick can create, it allows Google to

relink the two profiles if the user ever clears client-side state for one but not the other.

Origin countries. In exploring the use of LocalStorage and Flash cookies, we found that

trackers from different regions appear to exhibit different behaviors. The only tracker to

respawn cookies from LocalStorage comes from a Chinese domain, and of the eight trackers

involved in respawning to or from Flash cookies, four are US, two are Chinese, and two are
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Russian. The Chinese and Russian trackers seem to be overrepresented compared to their

fraction in the complete set of observed trackers.

Tracker clustering. While many of the top trackers are found across sites of a variety

of categories and origins, we observed some trackers to cluster around related sites. For

example, in the Alexa top 500, traffichaus.com and exoclick.com are found only on

adult sites (on five and six of about twenty, respectively). Similarly, some trackers are only

found on sites of the same geographic origin — e.g., adriver.ru is found only on Russian

sites and wrating.com only on Chinese sites.

Trackers interact with two types of users. We observed that Behavior B (Vanilla)

and Behavior C (Forced) trackers sometimes do not set tracking cookies when their websites

are visited directly — unlike Behavior E tracker like Facebook, which by definition set state

when they are visited. In other words, for example, turn.com sets a third-party tracking

cookie when it is embedded on another website, but not when the user visits turn.com

directly. Some trackers, in fact, use different domains for their own homepages than for their

tracking domains (e.g., visiting doubleclick.net redirects to google.com/doubleclick).

Trackers that exhibit these behaviors can never be Behavior E trackers, even if the users

directly visits their sites. We can only speculate about the reasons for these behaviors, but

we observe that trackers interact with two types of users: users whom they track from a

third-party position, and users who are their customers and who visit their website directly.

2.4.2 Comparison to Less Popular Sites

The measurements presented thus far give us an intuition about the prevalence and behavior

of trackers on popular sites. Since it is possible that different trackers with different behavior

are found on less popular sites, we collected data for non-top sites as well. In particular, we

visited 500 sites from the Alexa top million sites, starting with site #501 and at intervals

of 100. As in the top 500 case, we visited 4 random links on each page, resulting in a total

of 1959 unique pages visited.

In this measurement, we observed 7093 instances of tracking across 382 unique trackers,

summarized in the second set of columns in Table 2.3. Figure 2.7 shows the top 20 trackers
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Figure 2.7: Tracker Prevalence on Non-Top 500 Domains. Trackers are counted on

domains, i.e., if a particular tracker appears on two pages of a domain, it is counted once.

(counted by domains) for this measurement. The numbers below each bar indicate the

rank for the tracker in the top 500 domains. Note that Google Analytics and Doubleclick

are no longer ranked as high, but in absolute numbers appear a similar number of times.

ScorecardResearch and SpecificClick appear to be highly prevalent among among these less

popular sites.

Among the non-top 500 sites, we observed less LocalStorage use — only one of the eight

users of LocalStorage in the top 500 sites reappeared (disqus.com, which stored comment

drafts); we saw one additional instance of LocalStorage, contextweb.com, which stored a

unique value but does not duplicate it in the browser cookie. We also observed fewer Flash

cookies set (68 total across all sites and trackers, compared to 110 in the top 500 mea-

surement), finding one additional tracker — heias.com— that respawns its browser cookie

value from the Flash cookie.

2.4.3 Real Users: Using the AOL Search Logs

In order to better approximate a real user’s browsing history, we collected data using the

2006 AOL search query logs [129]. We selected 35 random users (about 1%) from the
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Figure 2.8: Browsing Profiles for 35 AOL Users. We report the measured profile size

for each user for the 20 top trackers from the top 500, using 300 unique queries (an average

of 253 unique pages visited) per user.

3447 users with at least 300 unique queries (not necessarily clickthroughs). For each of

these randomly selected users, we submitted to a search engine the first 300 of their unique

queries and visited the top search result for each. This resulted in an average of 253 unique

pages per user.

For the AOL users, we are interested in the size of the browsing profiles that trackers

can create. Here we must consider exactly how we define “profile”. In particular, a tracker

receives information about the domains a user visits, the pages a user visits, and the indi-

vidual visits a user makes (i.e., returning to the same page at a later time). A user may

be concerned about the privacy of any of these sets of information; in the context of this

study, we consider unique pages. That is, we consider the size of a browsing profile com-

piled by a given tracker to be the number of unique pages on which the user encountered

that tracker. The reason for using pages instead of visits is that using search logs to ap-

proximate real browsing behavior involves making multiple visits to pages that a real user

might not make — e.g., multiple unique queries may result in the same top search hit, which

TrackingTracker will visit but a real user may not, depending on why a similar query was
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repeated. Though TrackingTracker may thus visit multiple pages more than once, giving

more trackers the opportunity to load on that page, this is balanced by the fact that we, as

before, visit each page once before recording measurements in order to prime the cache and

the cookie database.

In order to compare AOL users, we focus on the top 20 cross-site trackers from the Alexa

top 500 measurement. That is, we take all 19 cross-site trackers from Figure 2.6 as well as

serving-sys.com, the next-highest ranked cross-site tracker. Figure 2.8 shows the size of

the profile compiled by each tracker for each of the 35 users.

We find that Doubleclick can track a user across (on average) 39% of the pages he or

she visited in these browsing traces — and a maximum of 66% of the pages visited by one

user. The magnitude of these percentages may be cause for concern by privacy-conscious

users. Facebook and Google can track users across an average of 23% and 21% of these

browsing traces (45% and 61% in the maximum case), respectively. As many users have and

are logged into Facebook and Google accounts, this tracking is likely not to be anonymous.

Two data points of note are the large profile sizes for google.com and quantserve.com

for one of the users. These spikes occur because that user visited a large number of pages

on the same domain (city-data.com), which embeds Google Maps and Quantserve.

From this data, we observe that, in general, the ranking of the trackers in the top 500

corresponds with how much real users may encounter them. In particular, doubleclick.net

remains the top cross-site tracker; the prominence of scorecardresearch.com in the non-

top 500 is not reflected here, perhaps because top search hits are likely biased towards more

popular sites.

2.5 Defenses

In this section, we explore existing defenses against tracking in the context of our classifica-

tion. We then present measurement results collected using the Alexa top 500 with standard

defenses enabled. Finally, we propose an additional defense — implemented in the form of

our browser add-on ShareMeNot — that aims to protect users from Behavior E tracking.

Again, unless otherwise noted, we refer to observations in September/October 2011.
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2.5.1 Initial Analysis of Defenses

Third-party cookie blocking. A standard defense against third-party web tracking is to

block third-party cookies. This defense is insufficient for a number of reasons. First, different

browsers implement third-party cookie blocking with different degrees of strictness. While

Firefox blocks third-party cookies both from being set as well as from being sent, most

other browsers (including Chrome, Safari, and Internet Explorer) only block the setting of

third-party cookies. So, for example, Facebook can set a first-party cookie when the user

visits facebook.com; in browsers other than Firefox, this cookie, once set, is available to

Facebook from a third-party position (when embedded on another page).

Thus, in most browsers, third-party cookie blocking protects users only from trackers

that are never visited directly — that is, it is effective against Behavior B (Vanilla) trackers

but not against Behavior C (Forced) or Behavior E (Personal) trackers. Firefox’s strict

policy provides better protection, but at the expense of functionality like social widgets and

buttons, some instantiations of OAuth or federated login, and other legitimate cross-domain

behavior (thus prompting Mozilla to opt against making this setting the default [119]).

Do Not Track. The recently proposed Do Not Track header and legislation aim to give

users a standardized way to opt out of web tracking. A browser setting (already implemented

natively in Firefox, IE, and Safari) appends a DNT=1 header to outgoing requests, informing

the receiving website that the user wishes to opt out of tracking. As of February 2012,

Do Not Track is merely a policy technique that requires tracker compliance, providing no

technical backing or enforcement. A major sticking point is the debate over the definition

of tracking, as the conclusion of this debate determines to which parties the Do Not Track

legislation will apply. As evidenced by the papers submitted to the W3C Workshop on

Web Tracking and User Privacy,4 many of the parties involved in tracking argue that their

behaviors should not be considered tracking for the purposes of DNT. It is our hope that

the tracking classification framework that we have developed and proposed in this paper

can be used to further the discussion of what should be considered tracking in the policy

4http://www.w3.org/2011/track-privacy/
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realm, and that a tool like TrackingTracker can be used in the browser to enforce and detect

violations of Do Not Track.

Clearing client-side state. There has been some concern [180] that pervasive opt-out

of tracking will create a tiered or divided web, in which visitors who opt out of tracking

(via the DNT header or other methods) will not be provided with the same content as

other visitors. One possible solution (also identified in [74]) to avoid tracking in the face

of this concern is to constantly clear the browser’s client-side state, regularly receiving new

identifiers from trackers. This may be a sufficient solution for Behavior B, Behavior C,

and Behavior D trackers, but it cannot protect users against Behavior E trackers to which

they have identified themselves as a particular account holder (and thus logging back in

will re-identify the same user). It is also hard to implement against Behavior A trackers, as

they set first-party state on the websites that embed them, and it is difficult to distinguish

in a robust manner the first-party state needed by the website from the state used by the

Behavior A tracker. Other work [179] shows furthermore that fingerprinting techniques can

re-identify a large fraction of hosts with fresh cookies.

Blocking popups. Most browsers today block popups by default, potentially making it

more difficult for Behavior C trackers to maneuver themselves into first-party positions.

However, websites can still open popups in response to user clicks. Furthermore, popups

are only one way that Behavior C trackers can force a user to visit their site directly (and the

easiest of these to detect and block). Other methods include redirecting the user’s browser to

the tracker’s domain and back using javascript, or business relationships between the tracker

and the embedding site that involve the site redirecting directly to a full-page interstitial

ad controlled by the tracker’s domain. These behaviors are hard or impossible to block as

they are used throughout the web for other legitimate purposes.

Recent findings (February 2012) [105] furthermore revealed programmatic form submis-

sion as a new technique for Behavior C tracking in Safari, which treats form submissions as

first-party interactions.

Private browsing mode. Private browsing mode, as explored in depth in [6], does not
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Figure 2.9: Tracker Prevalence on Top 500 Domains (3rd Party Cookies Blocked).

Trackers are counted on domains, that is, if a particular tracker appears on two pages of a

domain, it is counted once.

primarily address the threat model of web tracking. Instead, private browsing mode aims

to protect browser state from adversaries with physical access to the machine. While the

clearing of cookies when exiting private browsing mode can help increase a user’s privacy in

the face of tracking, private browsing mode does not aim to keep a user’s browsing history

private from remote servers.

2.5.2 Empirical Analysis of Defenses

As a part of our measurement study, we empirically analyzed the effectiveness of popup

blocking and third-party cookie blocking to prevent tracking. The results of these mea-

surements (run using the Alexa Top 500 domains, with 4 random links chosen from each)

are summarized on the righthand side of Table 2.3. Overall, we find that existing defenses

protect against a large portion of tracking, with the notable exception of Behavior E. We

dive into the effects of each measured defense in turn.

With popups blocked, we did not observe significant differences in the tracking capa-

bilities of most trackers. As expected, we observe fewer trackers exhibiting Behavior C



38

(Forced) — however, Behavior C using redirects remains, leaving three trackers exhibiting

such behavior. We find most Behavior C trackers exhibit this type of behavior only occa-

sionally, acting as Behavior B (Vanilla) the rest of the time. Thus, with third-party cookies

enabled, popup blocking does not affect the capabilities of most trackers. Indeed, we suspect

that most popups are used to better capture the user’s attention rather than to maneuver

the tracker domain into a first-party position. Nevertheless, this technique is sometimes

used for this purpose.5

Third-party cookie blocking is, as expected, a better defense against tracking. However,

recall that in most browsers other than Firefox, third-party cookie blocking only blocks

the setting, not the sending, of cookies. Thus, if a tracker can ever set a cookie (via

Behavior C or Behavior E), this cookie is available from that point forward. In Table 2.3,

we distinguish the results for Firefox’s strict cookie blocking policy: any type with an

asterisk in the “Cookies Blocked” column disappears in Firefox (trackers that exhibit both

Behavior A and E reduce to only A; the others disappear). Note the presence of one Behavior

B tracker: this is meebo.com, which sets unique identifiers in LocalStorage in addition to

browser cookies, leaving it unaffected by cookie blocking. Figure 2.9 shows the top 20

trackers for this measurement (compare to Figure 2.6), in which it is evident that most

cross-site trackers have disappeared from the top 20, leaving the prominence of Behavior E

trackers like Facebook, Twitter, YouTube, and others.

We also measured the effectiveness of disabling JavaScript, the most blunt defense

against tracking. We find that it is extremely effective at preventing tracking behaviors

that require API access to cookies to leak them, as is the case for Behavior A (Analytics)

and Behavior D (Referred). However, trackers can still set cookies via HTTP headers and

Behavior C trackers can use HTML redirects. Any tracking that requires only that content

be requested from a tracker is not impacted — thus, while the scripts of Behavior E and

other trackers cannot run (e.g., to render a social widget), they can be requested, thereby

enabling tracking. Some trackers simply use <noscript> tags to fetch single-pixel images

(“beacons”) when more complex scripting techniques are not available. Despite being the

5http://stackoverflow.com/questions/465662/
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Figure 2.10: Example Social Widgets. Behavior E trackers expose social widgets that

can be used to track users across all the sites on which these widgets are embedded.

most effective single defense, disabling JavaScript renders much of today’s web unusable,

making it an unworkable option for most users.

The Do Not Track header does not yet appear to have a significant effect on tracking,

as evidenced by the sustained prevalence of most trackers in Table 2.3. Note that, as in all

the results we report, we did exclude any trackers that set only non-unique and/or session

cookies, as some trackers may respond to the DNT header by setting an opt-out cookie. We

did notice that a few fairly prevalent trackers appeared to respond to the header, including

gemius.pl, serving-sys.com, media6degrees.com and bluekai.com. These results are

consistent with a recent set of case studies of DNT compliance [103].

Finally, we note that we did not observe any trackers actively changing behavior in an

attempt to circumvent the tested defenses — that is, we did not observe more LocalStorage

or more Flash cookies. Though we have not verified whether or not these trackers instead

use more exotic storage mechanisms like cache Etags, we hypothesize that enough users do

not enable these defenses to mobilize trackers to substantially change their behavior, and

hence fall outside our common case explorations.

2.5.3 A New Defense: ShareMeNot

From these measurements, we conclude that a combination of defenses can be employed to

protect against a large set of trackers. However, Behavior E trackers like Facebook, Google,

and Twitter remain largely unaffected. Recall that these trackers can track logged-in users

non-anonymously across any sites that embed so-called “social widgets” exposed by the

tracker. For example, Facebook allows other websites to embed a ”Like” button, Google

exposes a ”+1” button, and so on (see Figure 2.10 for a number of examples). These buttons

present a privacy risk for users because they track users even when they choose not to click
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Tracker Without ShareMeNot With ShareMeNot

Facebook 154 9
Google 149 15
Twitter 93 0
AddThis 34 0
YouTube 30 0
LinkedIn 22 0
Digg 8 0
Stumbleupon 6 0

Table 2.4: Effectiveness of ShareMeNot. ShareMeNot drastically reduces the occur-

rences of tracking behavior by the supported set of Behavior E trackers.

on any of the buttons.

When users can protect themselves from tracking in this fashion, it comes at the expense

of the functionality of the button. In Firefox, the stricter third-party cookie blocking policy

renders the buttons unusable. Other existing defenses, including the popular Disconnect

browser extension,6 work by simply blocking the tracker’s scripts and their associated but-

tons from being loaded by the browser at all, thereby effectively removing the buttons from

the user’s web experience entirely.

We introduce ShareMeNot, an add-on for Chrome and Firefox that aims to find a middle

ground between allowing the buttons to track users wherever they appear and retaining the

functionality of the buttons when users explicitly choose to interact with them. It does this

in one of two ways:

1. In one mode, ShareMeNot strips cookies from third-party requests to any of the sup-

ported Behavior E trackers under ordinary circumstances (as well as from any other

blacklisted requests that are made in the context of loading such a button); when it

detects that a user has clicked on a button, it allows the cookies to be included with

the request, thereby allowing the button click to function as normal, transparently to

the user.

2. In another mode, ShareMeNot blocks blacklisted requests completely, never loading

any social media widgets. Instead, it replaces these widgets with client-side replace-

6http://disconnect.me
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ment buttons; when a replacement button is clicked, ShareMeNot either dispatches

the sharing request to the appropriate domain, or reloads the real social widget (in

the case that the sharing request requires a CSRF token loaded with the widget, as

in the case of Facebook and Google).

The second approach is more privacy-preserving, since no requests are made to the tracker’s

domain until the user clicks a widget, but can have unintended effects on webpage layout.

Thus, we give ShareMeNot users the option to select their preferred mode.

The use of ShareMeNot shrinks the profile that the supported Behavior E trackers can

create to only those sites on which the user explicitly clicks on one of the buttons — at

which point the button provider must necessarily know the user’s identity and the identity

of the site on which the button was found in order to link the “like” or the “+1” action

to the user’s profile. No other existing approach can both shrink the profile a Behavior E

tracker can create while also retaining the functionality of the buttons, though concurrent

work on the Priv3 Firefox add-on [34] adopts the same basic approach; as of May 2014,

Priv3 supports fewer widgets, is no longer actively maintained, and, to our knowledge, was

not iteratively refined through measurement.

We experimentally verified the effectiveness of ShareMeNot on Firefox. As summarized

in Table 2.4, ShareMeNot dramatically reduces the presence of the Behavior E trackers

it supports to date. We chose to support these sites based in part on our initial, pre-

experimental perceptions of popular third-party trackers, and in part based on our experi-

mental discovery of the top trackers. ShareMeNot entirely eliminates tracking by most of

these, including Twitter, AddThis, Youtube, Digg, and Stumbleupon. While it does not

entirely remove the presence of Facebook and Google, it reduces their prevalence to 9 and

15 occurrences, respectively. In the Facebook case, this is due to the Facebook comments

widget, which triggers additional first-party requests (containing tracking information) not

blacklisted by ShareMeNot; the Google cases appear mostly on other Google domains (e.g.,

google.ca).

ShareMeNot is available at http://sharemenot.cs.washington.edu/, and its imple-

mentation is described in more detail in a 2012 article [141]. As of June 2014, ShareMeNot



42

has over 16,000 active users on Firefox and Chrome. Its techniques have been adopted by

Ghostery, another major tracking-related browser extension with over 2.3 million users on

Firefox and Chrome. Additionally, as of June 2014, I am working with the Electronic Fron-

tier Foundation (EFF), a nonprofit digital rights organization, to incorporate ShareMeNot

into its new anti-tracking add-on, Privacy Badger.7

2.6 Platform for Tracking Detection, Blocking, Measurement

Following our initial measurement work using TrackingTracker [139], we refined and ex-

tended the original measurement tool into a browser-based platform for tracking detection,

blocking, and measurement: TrackingObserver. We describe this platform, implemented as

a Chrome extension available at http://trackingobserver.cs.washington.edu, in this

section. The TrackingObserver platform:

1. dynamically detects trackers based on their client-side (cookie-related) behavior, and

2. provides APIs that expose the collected data along with blocking and measurement

functionality.

2.6.1 The Need for a Web Tracking Detection Platform

Though web tracking has received a great deal of attention, prompting both research, policy,

and commercial solutions, the solution space is fragmented, requiring each new implemen-

tation to begin from scratch. We observe that most available tools — including tools like

Ghostery, Collusion (renamed Lightbeam8), Disconnect, ShareMeNot, and others — inno-

vate not in how they detect trackers, but in how they handle trackers once detected. We

thus argue that innovation in web tracking tools would benefit from a shared platform that

provides the tracker detection functionality and that exposes the necessary APIs to allow

for innovation on top of this foundation.

We further observe that nearly all existing tools that detect and/or block third-party

trackers do so using a blacklist model, in which the tool relies on a predefined (possibly

7https://www.eff.org/privacybadger

8http://www.mozilla.org/en-US/lightbeam/
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user-loaded) list of known tracker domains. Though this model is simple to implement, it

suffers from several drawbacks:

• Blacklists must be kept complete and up-to-date. Prior work examining the effective-

ness of anti-tracking tools has shown that blacklists are often incomplete [104].

• Users must trust the creator of the blacklists not to exclude tracker domains with

whom the blacklist creator is colluding, or to include non-tracker domains (e.g., in

order to block a competitor’s site). This is a realistic concern: the same prior work

mentioned above [104] revealed that some tracking list providers intentionally over-

ride others to allow certain trackers. As another example of complicated incentives,

Ghostery is owned by a company that helps businesses use tracking effectively [151].

• As discussed earlier in this chapter, tracking behavior is complex and differs not only

between trackers but between different instances of a given tracker. Blacklist-based

solutions generally do not differentiate different types of trackers, and certainly do not

differentiate different behaviors of a given tracker.

Thus, we argue that web trackers should not be detected (only) using a blacklist, but

rather by observing and categorizing client-side behavior. That is, tracking behavior should

be detected dynamically within the browser, by observing third-party requests and client-

side state (such as cookies) in real-time.

Dynamic detection addresses the issues with blacklists that we described above. First,

dynamic tracking detection is neutral, based on tracking mechanisms and not on a poten-

tially ad-hoc (or worse, biased) list of known trackers. The dynamic detection code can be

audited once (or infrequently), rather than on every update to the blacklist. Second, because

dynamic detection is based on behaviors, it can detect new trackers automatically, without

requiring any intervention or extra steps on the part of the anti-tracking tool developer or

maintainer.

Dynamic detection can also be combined with a blacklist approach by reporting back

dynamically-detected trackers from individual users and combining this information to cre-

ate a global list of known trackers. (Prior work [104] has observed that community main-

tained blacklists are most effective.) It can also be combined with the more traditional
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blacklist-based approach of known tracker domains.

Finally, based on our experience with TrackingTracker (our original measurement tool),

we learned that the implementation this dynamic detection approach is more complex than

a blacklist-based implementation. It is therefore more difficult for each tool to adopt indi-

vidually. The TrackingObserver platform which we released provides this behavior-based

tracking detection algorithm for use by other developers. We hope that this platform will

benefit both researchers wishing to gather data about the web tracking ecosystem or exper-

iment with uses of this data, as well as commercial solutions wishing to help users manage

their privacy.

2.6.2 TrackingObserver’s APIs

TrackingObserver serves as a platform that provides dynamic tracking detection function-

ality and exposes a set of APIs to add-ons, themselves implemented as Chrome extensions.

Table 2.5 summarizes the APIs provided by the TrackingObserver platform. These APIs

provide several types of functionality:

1. Plumbing: These APIs set up links between add-ons and the TrackingObserver plat-

form itself.

2. Data: These APIs return data about trackers detected by TrackingObserver.

3. Blocking: These APIs support functionality for blocking and unblocking trackers.

4. Measurement: These APIs support automated measurement of web tracking.

We chose to provide these APIs based on the functionality supported by existing tracking-

related browser extensions, and iteratively based on our own experience creating a number

of add-ons to TrackingObserver (described below).

2.6.3 Case Studies: Add-Ons to TrackingObserver

To evaluate the power of TrackingObserver as a platform, we implemented a number of case

study add-ons on top of the TrackingObserver platform APIs described above. These add-

ons are depicted in Figures 2.11–2.14 and provide visualization, blocking, and measurement

functionality. Each add-on is itself a full-fledged Chrome extension that uses Chrome’s cross-
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Figure 2.11: Graph Visualization.

This add-on shows a graph of track-

ers and visited sites (similar to Collu-

sion/Lightbeam).

Figure 2.12: Per-Tab Visualization.

This add-on displays a list of the track-

ers detected on the current tab (similar to

Ghostery), along with their tracking cat-

egory (or categories) and a block/unblock

link.

Figure 2.13: Blocking Dashboard.

This add-on allows users to view and man-

age blocked trackers and categories.

Figure 2.14: Measurement Tool.

This add-on helps researchers perform au-

tomated measurements of web tracking.
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API Name Functionality Type

registerAddon(name, link) Registers an add-on to the TrackingObserver platform. Plumbing
registerForCallback() Registers the add-on for callbacks when tracking is de-

tected.
Plumbing

getTrackers() Returns information (domain, categoryList, tracked-
Sites) about all logged trackers.

Data

getTrackersOnCurrentTab() Returns information about trackers logged on the most
recent load of the active tab.

Data

getTrackersBySite() Returns information about trackers indexed by site on
which they were logged.

Data

blockTrackerDomain(domain) Causes TrackingObserver to start blocking third-party
requests to this domain.

Blocking

unblockTrackerDomain(domain) Causes TrackingObserver to stop blocking third-party
requests to this domain.

Blocking

trackerDomainBlocked(domain) Returns whether or not the given domain is currently
on the block list.

Blocking

getBlockedDomains() Returns the full set of currently blocked domains. Blocking
blockCategory(category) Causes TrackingObserver to start blocking all trackers

of the given category.
Blocking

unblockCategory(category) Causes TrackingObserver to stop blocking all trackers
of the given category.

Blocking

trackerCategoryBlocked(category) Returns whether or not the entire given category is
blocked.

Blocked

browseAutomatically(urls) Drives the browser to visit a list of URLs automatically. Measurement

Table 2.5: TrackingObserver Platform APIs. The TrackingObserver platform im-

plements the APIs described here and makes them accessible to platform add-ons (Sec-

tion 2.6.3). Both TrackingObserver and its add-ons are implemented as Chrome extensions.

extension message passing support to call TrackingObserver’s APIs. Table 2.6 summarizes

these add-ons, along with the lines of JavaScript needed to implement each one. The

implementation complexity of each add-on is small, requiring only between 70 and 350 lines

of JavaScript and relying to the TrackingObserver platform (which itself requires 858 lines

of JavaScript) to do the more complex tracking detection work.

2.7 Related Work

Web tracking has been studied extensively in prior, concurrent, and subsequent work to the

work described in this chapter. For example, Mayer et al. provide a good recent summary of

the state of web tracking technology and policy [107]. A number of studies have empirically
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Add-On Functionality Lines of Code
(JavaScript only)

Graph Visualization Graphs all trackers encountered while browsing
(based on Collusion).

344

Per-Tab Visualization Displays information about and allows (un)blocking
of trackers on current tab (based on Ghostery).

106

Blocking Dashboard Shows which trackers are blocked and allows
(un)blocking by domain and by tracking category.

190

Raw Data Display Shows all collected data in a raw form, suitable for
further processing (e.g., using Excel).

98

Measurement Tool Run an automated web tracking measurement. 74

Table 2.6: TrackingObserver Add-On Case Studies. This table describes the add-

ons to TrackingObserver that we implemented to demonstrate and evaluate the capabili-

ties enabled by its APIs. The functionality of existing tracking-related browser extensions

(e.g., Collusion/Lightbeam, Ghostery) can be supported by TrackingObserver. Each add-

on required a small amount of implementation effort given the common tracking detection

functionality provided by TrackingObserver.

examined tracking on the web (e.g., [74, 87, 88]) and on mobile devices (e.g., [45, 64]).

Especially in early work in this space [87], researchers frequently did not distinguish between

different types of trackers, grouping together, for example, Google Analytics (a within-

site tracker) and Doubleclick (a cross-site tracker), though they touch on aspects in prior

work [88]. As discussed, we believe that this distinction is fundamentally important for

understanding and responding to web tracking.

A five-year study of modern web traffic [73] found that ad network traffic accounts

for a growing percentage of total requests (12% in 2010). They find Google Analytics

on up to 40% of the pages reflected in their data, a number that has increased to over

50% in our data. Another measurement study of web tracking appeared in [79], in which

the authors examined the prevalence of cookie usage and P3P policies. Further afield,

studies have considered other instances of personal information leakage between websites

(e.g., [77, 78, 85, 86]).

Much web tracking relies on client-side storage of unique identifiers (e.g., using browser

cookies), and some trackers have been found explicitly circumventing user intent by “respawn-
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ing” unique tracking identifiers after the user deletes them (e.g., repopulating browser cook-

ies from Flash cookies) [12, 153]. Browser and machine fingerprinting techniques, which

require that the tracker store no explicit state in the user’s browser, have also recently

received increased attention [3, 39, 82, 122, 179].

From the user perspective, studies have shown that users are concerned by web tracking

practices (e.g., [91, 107, 108, 167]). Efforts like Do Not Track [103, 106] and proposed

legislation have arisen to address the issue from the policy side. Unfortunately, Do Not

Track talks appear to have stalled [152], indicating that a stronger technology solution may

after all be necessary to provide users with effective prevention capabilities.

Technical approaches to preventing links between a user’s browsing behaviors include

a variety of browser extensions (such as Ghostery, Collusion/Lightbeam, and others) and

browser settings (such as third-party cookie blocking), whose effectiveness has been studied

in this chapter and elsewhere [104]. More heavyweight approaches include the Tor Browser

Bundle9 and recent research on unlinkable pseudonyms based on IPv6 addresses [65]. Re-

searchers have also experimented with using machine learning techniques to prevent track-

ing [16]. Finally, researchers have focused on designing privacy-preserving alternatives to

tracking-related functionality — including advertising (e.g., [52, 62, 166]), analytics (e.g., [7])

and social media widgets (e.g. [34, 83]).

Additionally, there have been significant online discussions about tracking, e.g., [103].

Finally, entire workshops and working groups on tracking have emerged, e.g., the 2011

Workshop on Internet Tracking, Advertising, and Privacy, the 2011 W3C Workshop on

Web Tracking and User Privacy, and the W3C Tracking Protection Working Group.

2.8 Summary

In this chapter we presented an in-depth empirical investigation of third-party web track-

ing. Our empirical investigation builds on the introduction of what we believe to be the

first comprehensive classification framework for web tracking based on client-side observable

behaviors. We believe that this framework can serve as a foundation for future technical

9https://www.torproject.org/projects/torbrowser.html.en
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and policy initiatives. We additionally evaluated a set of common defenses on a large

scale and observed a gap — the ability to defend against Behavior E tracking with social

media widgets, like the Facebook “Like” button, while still allowing those widgets to be

useful. In response, we developed and evaluated ShareMeNot, which is designed to thwart

such tracking while still allowing the widgets to be used. Finally, we expanded our origi-

nal measurement tool into TrackingObserver, a web tracking detection, measurement, and

blocking platform. This work thereby tackles the first key challenge identified in Chapter 1,

embedded third-party principals, in the context of the web.
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Chapter 3

USER-DRIVEN ACCESS CONTROL: RETHINKING PERMISSION
GRANTING FOR MODERN OPERATING SYSTEMS

This chapter considers another key challenge identified in Chapter 1: the problem of ap-

plication permission granting in modern operating systems, such as iOS, Android, Windows

Phone, Windows 8, and web browsers. Rather than asking users to explicitly make access

control decisions (e.g., by responding to a permission prompt), we take the approach of

user-driven access control, whereby permission granting is built into existing user actions in

the context of an application. To allow the system to precisely capture permission-granting

intent in an application’s context, we introduce access control gadgets (ACGs), which lever-

age an application’s ability to embed user interface content from third-party principal — in

this case, a system-trusted principal. This work was first described in a 2012 paper [138].

3.1 Motivation and Overview

Many modern client platforms treat applications as distinct, untrusted principals. For

example, smartphone operating systems like Android [58] and iOS [9] isolate applications

into separate processes with different user IDs, and web browsers implement the same-origin

policy [169], which isolates one web site (or application) from another. By default, these

principals receive limited privileges; they cannot, for example, access arbitrary devices or

a global file system. From a security perspective, this is an improvement over desktop

systems, which treat users as principals and grant applications unrestricted resource access

by virtue of installation.

Unfortunately, these systems provide inadequate functionality and security. From a

functionality standpoint, isolation inhibits the client-side manipulation of user data across

applications. For example, web site isolation makes it difficult to share photos between

two sites (e.g., Picasa and Flickr) without manually downloading and re-uploading them.

While applications can pre-negotiate data exchanges through IPC channels or other APIs,
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requiring every pair of applications to pre-negotiate is inefficient or impossible. From a

security standpoint, existing access control mechanisms tend to be coarse-grained, abrasive,

or inadequate. For instance, they require users to make out-of-context, uninformed decisions

at install time via manifests [13, 58], or they unintelligently prompt users to determine their

intent [9, 112].

Thus, a pressing open problem is how to allow users to grant applications access to user-

owned resources: privacy-and cost-sensitive devices and sensors (e.g., the camera, GPS, or

SMS), system services and settings (e.g., the contact list or clipboard), and user content

stored with various applications (e.g., photos or documents). To address this problem, we

advocate user-driven access control, whereby the system captures user intent via authentic

user actions in the context of applications. Prior work [116, 149, 157] applied this principle

largely in the context of least-privilege file picking, where an application can access only

user-selected files; in this chapter, we generalize it for access to all user-owned resources.

Furthermore, we introduce access control gadgets (ACGs) as an operating system tech-

nique to capture user intent. Each user-owned resource exposes user interface (UI) elements

called ACGs for applications to embed. The user’s authentic UI interactions with an ACG

grant the embedding application permission to access the corresponding resource. Our de-

sign ensures the display integrity of ACGs, resists tampering by malicious applications,

and allows the system to translate authentic user input on the ACGs into least-privilege

permissions.

The ACG mechanism enables a permission granting system that minimizes unintended

access by letting users grant permissions at the time of use (unlike the manifest model) and

minimizes the burden on users by implicitly extracting a user’s access-control intentions

from his or her in-application actions and tasks (rather than, e.g., via prompts).

In addition to system-controlled resources, we generalize the notion of user-driven ac-

cess control to sensitive resources controlled by applications with application-specific ACGs.

Applications (e.g., Facebook) that provide APIs with privacy or cost implications (e.g.,

allowing access to friend information) can expose ACGs to require authentic user actions

before allowing another application to invoke those APIs.

We built a prototype of user-driven access control into an existing research system [173]
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that isolates applications based on the same-origin policy. A quantitative security evaluation

shows that our system prevents a large swath of user-resource vulnerabilities. A study of

today’s Android applications shows that our design presents reasonable tradeoffs for devel-

opers. Finally, we conduct two different user studies (with 139 and 186 users, respectively);

the results indicate that user-driven access control better matches user expectations than

do today’s systems.

3.2 State of the Art in Permission Granting

We motivate our work by identifying shortcomings in existing permission granting systems.

Here, we discuss common and commercially available approaches; we discuss additional

related research approach in Section 3.7.

Global resources. Traditional desktop systems expose system resources to applications

simply by globalizing them: applications have unfettered access to a global file system,

to the system clipboard, and to peripheral devices. Similarly, smartphone OSes expose a

global clipboard to applications. While user-friendly in the benign case, this model allows

applications to access resources even when they don’t need them (i.e., it violates the prin-

ciple of least-privilege) and allows unintended access (e.g., attacks that pollute the globally

accessible clipboard [37]). Our user studies (Section 3.6.2) indicate that such exposures

contradict users’ expectations (e.g., users expect data on the clipboard to remain private

until pasted).

Manifests. Applications on Android, Facebook, Windows Phone, and Window 8 use

install-time manifests to request access to system resources. Figure 3.1 shows an example

of an Android manifest. Once the user agrees, the installed application receives permanent

access to the requested resources. This violates least-privilege, as installed applications may

access these resources at any time, not just when needed to provide intended functionality

(e.g., allowing malicious applications to surreptitiously take photos [161]). Furthermore,

studies indicate that many applications ask for more permissions than needed [15, 49] and

that users pay little attention to, and show little comprehension of, Android manifests [50].

Recent Android malware outbreaks suggest that manifests do not prevent users from in-
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Figure 3.1: Android Manifest. Android,

Facebook, Windows Phone, and Window 8

use install-time manifests to grant permis-

sions. Manifests over-privilege applications

by granting permanent access to requested

resources, and user comprehension of mani-

fests is low.

Figure 3.2: Prompts. Browsers (top) and

iOS (bottom) prompt for geolocation access;

Windows (center) prompts for actions re-

quiring administrative privilege. Prompts

attempt to verify user intent, but their dis-

ruptiveness teaches users to ignore and click

through them.

stalling applications that ask for excessive permissions [13].

While we argue against user-facing manifests, manifests are a useful mechanism for

communication between an application and the system; an application can specify the

maximum set of permissions it may need, and the system can then restrict the application

accordingly to mitigate the effects of an application compromise. In this way, system-facing

manifests may be applied in conjunction with user-driven access control.

Prompts. By contrast, iOS [9] prompts users the first time an application wishes to access

a resource. Windows displays a User Account Control prompt [112] when an application

requires additional privileges to alter the system. Nascent support for user-owned resources

in HTML5 involves prompting for geolocation access. Figure 3.2 shows examples of such
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prompts.

While these prompts attempt to verify user intent, in practice, the burden they place on

users undermines their usefulness. Specifically, when the user intends to grant access, the

prompts seem unnecessary, teaching users to ignore them [178]. Several studies have shown

that users ignore interruptive warnings [56] and click through even illegitimate consent

prompts [118]. As a result, systems like iOS prompt users only the first time an application

attempts to access a resource, and allow the application unrestricted access to that resource

thereafter (violating least-privilege).

No access. To address security concerns, some systems simply do not support appli-

cation access to system resources. For example, in today’s browsers [135], web appli-

cations generally cannot access a user’s local devices and have restricted access to the

file system and to the clipboard [113]. (Browser plugins, which have access to all sys-

tem resources, are a dangerous exception.) Research browsers and browser operating sys-

tems [31, 61, 69, 159, 172, 173] also have not addressed access control for system resources.

The functionality needs of legitimate applications are clearly at odds with this restric-

tive model and have led web developers to circumvent such restrictions using browser plu-

gins. For instance, developers have created copy-and-paste buttons by overlaying transpar-

ent Flash elements and tricking users into clicking on them (e.g., via clickjacking) [123].

Browsers have thus begun to expose more resources to web applications, as I discuss further

below. Existing specifications for permitting access to system resources [171] note only that

permission-granting should be tied to explicit user actions, but they do not address how

these should be mapped to system-level access control decisions.

3.3 Goals and Context

We consider the problem of allowing a system to accurately capture a user’s access control

decisions for user-owned resources. Learning from existing systems, our goals are to enable

permission granting that is (1) in-context (unlike manifests), (2) non-disruptive (unlike

system prompts), and (3) least-privilege (unlike most previous systems).
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Figure 3.3: Application Model. As in web mashups, applications may embed other

applications. Each application is isolated and runs atop a generic runtime (e.g., a browser

renderer or Win32 library).

3.3.1 System Model

We assume (see Figure 3.3) that applications are isolated from each other according to

some principal definition (such as the same-origin policy), share no resources, and have no

access to user-owned resources by default. Applications may, however, communicate via

IPC channels. Some existing systems (e.g., browsers and smartphones) support many of

these features and could be modified to support the rest.

We further assume that applications (and their associated principals) may embed other

applications (principals). For instance, a news application may embed an advertisement.

Like all applications, embedded principals are isolated from one another and from the outer

embedding principal.1 We assume that the kernel has complete control of the display and

that applications cannot draw outside of the screen space designated for them. An ap-

plication may overlap, resize, and move embedded applications, but it cannot access an

embedded application’s pixels (and vice versa) [147, 172]. Furthermore, the kernel dis-

patches UI events only to the application with which the user is interacting. The prototype

system [173] that we use to implement and evaluate user-driven access control supports these

properties; Chapter 4 discusses how a system can achieve secure embedded user interfaces

1Research browser Gazelle [172] advocated this isolation. Commercial browsers like Chrome and IE have
not yet achieved it, instead putting all principals embedded on one web page into the same OS process.
Today’s smartphones do not yet support cross-principal content embedding, but we anticipate this to
change in the future; Chapter 4 discusses how it can be achieved securely.
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in general.

To provide access control for user-owned resources, a system must support both access

control mechanisms and access control policies. For the former, to simplify the discussion,

we assume that for each user-owned resource, there is a set of system APIs that perform

privileged operations over that resource. The central question of this work is how to specify

policies for these mechanisms in a user-driven fashion.

3.3.2 User-Owned Resources

In this work, we study access control for user-owned resources. Specifically, we assume that

by virtue of being installed or accessed, an application is granted isolated access to basic

execution resources, such as CPU time, memory, display, disk space, and network access.2

We consider all other resources to be user-owned, including: (1) Devices and sensors,

both physical (e.g., microphone, GPS, printer, and the phone’s calling and SMS capabilities)

and virtual (e.g., clipboard and contacts), (2) user-controlled capabilities or settings, such

as wiping or rebooting the device, and (3) content (e.g., photos, documents, or friends lists)

residing in various applications.

3.3.3 Threat Model

We aim to achieve our above-stated goals in the face of the following threat model. We con-

sider the attacker to be an untrusted application, but we assume that the kernel is trustwor-

thy and uncompromised; hardening the kernel is an orthogonal problem (e.g., [132, 146]).

We assume attacker-controlled applications have full network access and can communicate

via IPC to other applications on the client side. We classify potential threats to user-owned

resources into three classes:

1. When: An application accesses user-owned resources at a moment when the user did

not intend.

2Network access is part of today’s manifests. We believe that approving network access for safety is too
much to ask for most users. Nevertheless, we allow an application to provide a non-user-facing manifest to
the OS to enable better sandboxing (e.g., by restricting network communication to a whitelist of domains).
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2. Who: An application other than the one intended by the user accesses user-owned

resources.

3. What: An application grants another application access to content other than that

specified by the user. This false content may be malicious content intended to exploit

another application, and/or it may be a user’s authentic content, but not the content

to which the user intended to grant access (leaked content).

In this work, we restrict this model in two ways. First, we do not address the problem of

users misidentifying a malicious application as a legitimate application. For example, a user

may mistakenly grant camera access to a fake, malicious Facebook application. Principal

identification is a complementary problem (even if solved, we must still address user-driven

access control for well-identified principals). Second, we consider out of scope the problem

of “what” data is accessed. Input sanitization to protect against malicious content is a

separate research problem. Furthermore, applications possessing user data can already leak

it via network and IPC communication. Techniques like information flow control [181] may

help remove this assumption but are orthogonal.

In this work, we aim to raise the bar for malicious applications attempting to access

user-owned resources without user authorization, and to reduce the scope of such accesses.

3.4 Design: User-Driven Access Control

The fundamental problem with previous permission granting models is that the system has

no insight into the user’s in-application behaviors. Consequently, the system cannot implic-

itly learn the user’s permission-granting intent and must ask the user explicitly (e.g., via

an out-of-context manifest or a system prompt uncoordinated with the user’s in-application

behavior). Our goal is to bridge this disconnect between a user’s activities in an application

and the system’s permission management for sensitive resources. In particular, we aim to

enable user-driven access control, which allows the user’s natural UI actions in the context

of an application to govern the access control of user-owned resources.

To achieve this goal, we need (1) applications to build permission-granting UIs into their

own context, and (2) the system to obtain the user’s authentic permission-granting intent

from his or her interaction with these UIs. We introduce access control gadgets (ACGs) as
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Figure 3.4: System Overview. Resource monitors mediate access to user-owned resources.

They capture the user’s intent to grant an application access to that resource via (1a) UI

elements in the form of access control gadgets, and/or via (1b) permission-granting input

sequences detected by the kernel.

this permission-granting UI, a key mechanism to achieve user-driven access control.

Figure 3.4 gives an overview of our system. Each type of user-owned resource (e.g., the

abstract camera type) has a user-driven resource monitor. This resource monitor (RM) is a

privileged application that exclusively mediates access to all physical devices (e.g., multiple

physical cameras) of that resource type and manages the respective access control state.

The RM exposes to applications (1) access control gadgets (ACGs) and (2) device access

APIs. ACGs are permission-granting UI elements which applications can embed. A user’s

authentic interactions with the ACGs (e.g., arrow 1a in Figure 3.4) allow the RM to capture

the user’s permission-granting intent and to configure the access control state accordingly.

For example, clicking on the camera ACG grants its host application permission to take a

picture with the camera. Applications can invoke the device access APIs exposed by the

RM only when granted permission.

Users can also grant permissions via user-issued permission-granting input sequences. For

example, the camera RM may designate the Alt-P key combination or the voice command

“Take a picture” as the global input sequence for taking a picture. Users can then use these
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Figure 3.5: Example Access Control Gadgets (ACGs). The circled UI elements are

application-specific today, but in our model, they would be ACGs for (a) content picking,

(b) copy & paste, or (c) device access.

directly to grant the permission to take a picture (arrow 1b in Figure 3.4).

ACGs apply to a broad range of access control scenarios, including device access (e.g.,

camera and GPS), system service access (e.g., clipboard and wipe-device), on-device user

data access (e.g., address book and autocomplete data), and application-specific user data

access (e.g., Facebook’s friends list). Figure 3.5 gives a few examples. We later describe our

implementation of a representative set of ACGs in Section 3.5.3.

An RM (e.g., a camera RM) may manage multiple physical devices (e.g., multiple cam-

eras). The RM provides a device discovery API so that an application can choose to employ

a specific physical device. An RM can also incorporate new UI elements into its ACG(s)

when a new device (e.g., a new camera with additional menu options) is plugged into the

system. An RM must be endorsed (and signed) by the OS vendor and trusted to manage

its resource type; new RMs are added to the system like device drivers (e.g., by coming

bundled with new hardware or downloaded). In this paper, we will not further discuss these

aspects of RM design and instead focus on authentically capturing and carrying out user

intent.

In the rest of this section, we first present our design enabling the system to obtain

authentic user interactions with an ACG (Section 3.4.1); we defer the design of specific

ACGs to Section 3.5.3. Our system supports a variety of access semantics (Section 3.4.2),

such as one-time, session, and permanent access grants; it also supports ACG composition
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(Section 3.4.3) to reduce the number of user actions required for granting permissions. In

Section 3.4.4, we generalize user-driven access control to allow all applications to act as RMs

and expose ACGs for application-specific resources. Finally, Section 3.4.5 describes alternate

ways in which users can grant permissions via kernel-recognized permission-granting input

sequences that arrive via keyboard, mouse, or voice commands.

3.4.1 Capturing User Intent with ACGs

To accurately capture the user’s permission-granting intent, the kernel must provide a

trusted path [177] between an ACG and the user. In particular, it must ensure the integrity

of the ACG’s display and the authenticity of the user’s input; we discuss these protections

here, and develop a more general set of requirements and techniques for securing embedded

user interfaces, including ACGs, in Chapter 4. Helping the user distinguish forged ACGs

from real ACGs is less critical; an entirely forged ACG (i.e., not a real ACG with a forged

UI) cannot grant the embedding application any permissions.

ACG→User: Ensuring Display Integrity

It is critical that the user sees an ACG before acting on it. We ensure the display integrity

of ACGs by guaranteeing the following three properties.

1. Display isolation: The kernel enforces display isolation between different embedded

principals (Section 3.3.1), ensuring that an application embedding an ACG cannot set

the ACG’s pixels.

2. Complete visibility: The kernel ensures that active ACGs are completely visible, so

that malicious applications cannot overlay and manipulate an ACG’s display to mis-

lead users (e.g., overlaying labels to reverse the meaning of an ACG’s copy/paste

buttons). To this end, we require that ACGs be opaque and that the kernel only ac-

tivate an ACG when it is entirely visible (i.e., at the top of the display’s Z ordering).

An ACG is deactivated (and greyed out) if any portion becomes obscured.

3. Sufficient display duration: The kernel ensures that the user has sufficient time to

perceive an active ACG. Without this protection, applications can mount timing-
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based clickjacking attacks in which an ACG appears just as the user is about to click

in a predictable location. Thus, the kernel only activates an ACG after it has been

fully visible in the same location for at least 200 ms, giving the user sufficient time to

react (see [99]). We use a fade-in animation to convey the activation to the user, and

temporarily deactivate an ACG if it moves. We postulate (as do the developers of

Chrome [26] (Issue 52868) and Firefox [120] (Advisory 2008-08)) that the delay does

not inconvenience the user in normal circumstances.

Customization. There is a tension between the consistency of an ACG’s UI (that conveys

permission-granting semantics to users) and the UI customization desired by developers to

better build ACGs into application context. For example, developers may not wish to use

the same geolocation ACG for different functions, such as “search nearby,” “find deals,” and

“check in here.” However, allowing applications to arbitrarily customize ACGs increases

the attack surface of an RM and makes it easy for malicious applications to tamper with an

ACG’s display (e.g., a malicious application can disguise a gadget that grants geolocation

access as one that does not).

With respect to customization, we consider three possible points in the design space.

1. Disallow customization. Disallowing customization ensures display integrity, but might

incentivize developers to ask for permanent access unnecessarily so that they can de-

sign their desired UIs.

2. Limited dynamic customization. ACGs can be customized with parameters, such as

color and size, with a fixed set of possible values for each parameter.

3. Arbitrary customization with a review process. Another possibility is to allow arbi-

trary customization but require explicit review and approval of custom ACGs (similar

to how applications are reviewed in today’s “app stores”). In this model, application

developers use the available ACGs by default, but may submit customized ACGs for

approval to an “ACG store.” This option incentivizes developers to use the stan-

dard non-customized ACGs in the common case, and ensures display integrity for the

approved ACGs that are submitted to the “store.”
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In our evaluation of existing Android applications (Section 3.6.7), we find that gadgets

with limited customization would be sufficient in most cases.

User→ACG: Interpreting Authentic User Input

In addition to guaranteeing the display integrity of ACGs as described above, we must

ensure (1) that input events on ACGs come authentically from the user, and (2) that the

kernels grants permissions to the correct application.

For (1), our kernel enforces input event isolation, i.e., the kernel dispatches user input

events originating from physical devices (e.g., keyboard, touchscreen, mouse, or microphone)

only to the in-focus application. No application can artificially generate user input for other

applications. Thus, when an ACG is in focus and the user acts on it, the user’s input,

dispatched to the corresponding RM, is guaranteed to be authentic. Equally important, the

kernel must protect input-related feedback on the screen. For example, the kernel controls

the display of the cursor and ensures that a kernel-provided cursor is shown when the mouse

hovers over a gadget. This prevents a malicious application from confusing the user about

where they are clicking within an ACG.

For (2), it is straightforward for the kernel to determine the correct application to which

to grant permissions when there is a single level of embedding, i.e., when a top-level applica-

tion embeds an ACG. However, care must be taken for multi-level embedding scenarios. For

example, a top-level application may embed another application which in turn embeds an

ACG. Such application nesting is a common pattern in today’s web and can be arbitrarily

deep.

Thus, the kernel must prevent an embedded application from tricking users into believing

that the ACG it embeds is owned by the outer, embedding application. For example, a

malicious ad embedded in publisher.com might embed an ACG for geolocation access. If

the ad’s UI mimics that of the publisher, the user may be tricked into thinking that the

ACG will grant access to the publisher rather than to the ad.

To prevent such confusion, we enforce the restriction that only a “top-level” or outermost

application can embed ACGs by default. We postulate that users are more cognizant of top-
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Algorithm 1 : Can Principal X embed ACG G? If CanEmbed returns true, the kernel
embeds an active instance of ACG G. Otherwise, it embeds an inactive ACG. X’s parent
may specify whether X may embed a particular ACG either statically when embedding X,
or dynamically in response to a kernel-initiated upcall to CheckNestedPermission().

1: function CanEmbed(X, G)
2: if X is a top-level application then
3: Return true
4: if X.Parent allows X to embed G then
5: Return CanEmbed(X.Parent, G)
6: else
7: Return false

level applications than nested ones. However, we allow an application to permit its nested

applications to embed ACGs. For this purpose, we introduce PermissionToEmbedACG, a new

type of (resource-specific) permission. Consider an application A that embeds application X,

which attempts to embed an ACG for a resource. Algorithm 1 shows how the kernel

determines whether application X may embed an active ACG for that resource. If this

permission is denied, the kernel embeds an inactive gadget. If application X already has

access to a resource (via prior session or permanent access grants), it retains this access, but

embedding X does not grant application A access to that resource — nor do user actions on

ACGs in embedded applications grant permissions to their embedding ancestors.

3.4.2 Access Semantics

After capturing a user’s intent to grant access — via an ACG or a permission-granting

input sequence (Section 3.4.5) — a resource monitor must act on this intent. We discuss the

mechanisms for granting access in our implementation in Section 3.5; here we consider the

semantics of different types of access.

Figure 3.6 illustrates access durations, their relationship with user actions, and their

respective security implications. There are four types of access durations that may be

granted to applications: one-time (such as taking a picture), session (such as video record-

ing), scheduled (access scheduled by events, such as sending a monthly SMS reminder for

paying rent), and permanent.
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Figure 3.6: Access Semantics. Access duration, relationship with user actions, and secu-

rity implications.

For both one-time and session access, user actions naturally convey the needed access

duration. For example, when a user takes a photo, the click on the camera ACG is coupled

with the need for one-time access to the camera. Similarly, when recording a video, the

user’s toggling of the record button corresponds to the need to access the video stream.

We characterize this relationship with user actions as UI-coupled access. With ACGs, UI-

coupled access can be made least-privilege. For long-running applications, the system may

alert the user about an ongoing session access after the user has not interacted with the

application for some time.

In contrast, scheduled and permanent access are UI-decoupled: the user’s permission-

granting actions are decoupled from the access. For example, the user might grant an

application permanent camera access; later accesses to this resource need not be directly

coupled with any user actions. It is more difficult to make UI-decoupled access least-

privilege.

For scheduled scenarios, we propose schedule ACGs — using common triggers like time

or location as scheduling parameters — to achieve least-privilege access. For example, the

user explicitly schedules access for certain times (e.g., automatically access content every

12 hours to back it up) or when in a certain location (e.g., send an SMS when the location

criteria is met). In these scenarios, users must already configure these conditions within

the application; these configurations could be done via a schedule ACG presented together

with resource ACGs in the context of the application.

However, scheduled access does not encompass unconventional events (e.g., when a
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game’s high score is topped). For those scenarios, applications must request permanent

access. In our system, permanent access configuration is done via an ACG. To encourage

developers to avoid requesting unnecessary permanent access, RMs can require additional

user interactions (e.g., confirmation prompts), and security professionals or app store re-

viewers can apply greater scrutiny (and longer review times) to such applications. Our

study of popular Android applications (Section 3.6.3) shows that a mere 5% require per-

manent access to user-owned resources, meaning users’ exposure to prompts will be limited

and that extra scrutiny is practical.

It is the RM’s responsibility to provide ACGs for different access semantics (if at all —

devices like the printer and the clipboard may support only one-time access). Each RM

is further responsible for configuring appropriate policies for applications running in the

background. For example, unlike access to the speaker, background video recording might

not be permitted.

The user must be able to revoke access when the associated ACG is not present. A

typical approach is to allow the user to issue a secure attention sequence [80] like Ctrl-Alt-

Del (or to navigate system UI) to open a control panel that shows the access control state

of the system and allows revocation. Prior work also suggests mechanisms for intuitively

conveying access status [68].

3.4.3 ACG Composition

Some applications may need to access multiple user-owned resources at once. For example,

an application may take a photo and tag it with the current location, requiring both camera

and geolocation access, or support video chat, requiring camera and microphone access. It

would be burdensome for users to interact with each ACG in turn to grant these permissions.

To enable developers to minimize the number of user actions in such scenarios, we allow

applications to embed a composition ACG (C-ACG) exposed by a composition resource

monitor. A single user action on a composition ACG grants permission to all involved

user-owned resources.

A composition RM serves as a UI proxy for the RMs of the composed resources: when
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a user interacts with a C-ACG, the C-ACG invokes privileged API calls to the involved

resource RMs (available only to the composition RM). The invocation parameters include

(1) the application’s anonymous ID (informing the RM to which application to grant permis-

sions), (2) an anonymous handle to the application’s running instance (to allow return data,

if any, to be delivered), and (3) a transaction ID (allowing the application instance to group

data returned from different RMs). This design allows the C-ACG to be least-privilege,

with no access to the composed resources.

We disallow arbitrary composition, which could allow applications to undermine our

goal of least-privilege access. For example, an application that only needs camera access

could embed a C-ACG composing all user-owned resources. Instead, the composition RM

exposes a fixed set of compositions that can only be extended by system or RM updates.

As with other RMs, the composition RM is responsible for the UI of its ACGs. In our

evaluation (Section 3.6.7), we find that composition is rarely used today (only three types

of composition appear and are used in only 5% of the applications we surveyed), suggesting

that this fixed set of compositions would suffice.

3.4.4 Generalization: Application-Specific ACGs

So far, we have presented ACGs for system resources. Now, we generalize this notion to

application-specific resources with application-specific ACGs.

Today, applications expose APIs allowing other applications to access their services and

resources. We argue that an application should also be able to expose ACGs for its user-

sensitive services, thereby requiring authentic user actions to permit the corresponding API

access. For example, Facebook might expose an ACG for accessing the Facebook friends list.

As another example, applications can expose file-picking ACGs, ensuring that only content

authentically picked by the user is shared with other applications (see Section 3.5.3).

An application exposing application-specific ACGs must register itself as a RM and

specify its ACGs to the kernel.

Embedding an application-specific ACG is similar to a web mashup where app1.com

embeds an iframe sourced from app2.com. One key distinction is that an application-
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specific ACG grants permissions to its embedding application X only if X’s ancestors granted

PermissionToEmbedACG down the nesting hierarchy (Section 3.4.1).

3.4.5 Permission-Granting Input Sequences

Instead of interacting with UI elements, some users prefer alternate input methods, e.g.,

using keyboard, mouse, touch, or voice commands. For example, some users prefer keying

Ctrl-C to clicking on the “copy” button or prefer drag-and-drop with a mouse to clicking on

copy-and-paste buttons. In addition to the visible ACGs exposed by RMs, we thus support

permission-granting sequences detected by the kernel. While prior work (Section 3.7) has

suggested specific reserved gestures [51, 142, 147], we establish input sequences as first-class

primitives for supporting user-driven access control.

System RMs may register permission-granting input sequences with the kernel. By

monitoring the raw stream of input from the user, the kernel can detect these authentic

input events and dispatch them — along with information about the application with which

the user is interacting — to the appropriate RM. The RM then grants the application the

associated permission. For example, the camera RM registers the voice command “Take

a picture” as a permission-granting input sequence. When the user says this while using

an application, the kernel interprets it as a registered input sequence and sends the event

and the application information to the camera RM. The camera RM then acts on this user

intent to grant the application the permission to take a picture.

Sequence ownership. As with ACG ownership as described in Section 3.4.1, determining

to which application a sequence should be applied is more complex with nested applica-

tions. We take the same approach here: by default, the sequence is applied to the top-level

application, which can permit nested applications to receive permission-granting sequences

with the PermissionToReceiveSequence permission.

Sequence conflicts. We consider two kinds of sequence conflicts: (1) Two RMs may

attempt to define the same global sequence, and (2) applications may assign global sequences

to their own application-specific functionality (e.g., using Ctrl-C to abort a command in a

terminal). The former must be resolved by the OS vendor in the process of endorsing new
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Type Call Name Description

syscall InitContentTransfer(push or pull,

dest or src)

Triggers the kernel to push or pull content from
a principal.

upcall StartUp(gadgetId, appId, appHandle) Notifies monitor of a new embedded ACG.
upcall InputEvent(gadgetId or

inputSequence, appId, appHandle)

Notifies monitor of ACG input event or a rec-
ognized sequence.

upcall LostFocus(gadgetId, appId,

appHandle)

Notifies monitor when an ACG loses focus.

upcall EmbeddingAppExit(gadgetId, appId,

appHandle)

Notifies monitor when application embedding
an ACG exits.

Table 3.1: System Calls and Upcalls for Resource Monitors. This table shows the

system calls available to resource monitors and the upcalls which they must handle. Each

upcall is associated with an ACG instance or permission-granting input sequence.

RMs. Note that application-specific RMs are not permitted to register sequences, as it would

make the resolution of cross-RM conflicts unscalable. For (2), applications are encouraged

to resolve the conflict by using different sequences. However, they may continue to apply

their own interpretations to input events they receive and simply ignore the associated

permissions. Applications can also implement additional sequences internally; e.g., Vi could

still use “yy” for internal copying. However, the data copied would not be placed on

the system clipboard unless the user employed the appropriate permission-granting input

sequence or corresponding ACG.

3.5 Implementation

We build our new mechanisms into ServiceOS [173], a prototype system that provides the

properties described in Section 3.3.1. In particular, the kernel isolates applications accord-

ing to the same-origin policy, and it controls and isolates the display. Applications have

no default access to user-owned resources and may arbitrarily embed each other; embed-

ded applications are isolated. The system supports a browser runtime for executing web

applications, as well as some ported desktop applications, such as Microsoft Word.

We extended ServiceOS with about 2500 lines of C# code to allow (1) the kernel to

capture user intent via ACGs or permission-granting input sequences (Section 3.5.1), and

(2) the appropriate RM to act on that intent (Section 3.5.2). Tables 3.1 and 3.2 summarize
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Type Call Name Description

syscall EmbedACG(location, resource, type,

duration)

Embeds an ACG in the calling application’s UI.

upcall PullContent(windowId, eventName,

eventArgs)

Pulls content from a principal based on user intent.

upcall PushContent(windowId, eventName,

eventArgs)

Pushes content to a principal based on user intent.

upcall IntermediateEvent(windowId,

eventName, eventArgs)

Issues a DragEnter, DragOver, or DragLeave to a
principal.

upcall IsDraggable(windowId, x, y) Determines if object under cursor is draggable.
upcall CheckNestedPermission(windowId,

nestedApp, acgType)

Determines if nested application may embed ACG.

Table 3.2: System Calls and Upcalls for Applications. This table shows the system

calls available to applications and the upcalls which they must handle. The windowId

allows a multi-window application to determine which window should respond to the

upcall.

the system calls and application upcalls we implemented to support user-driven access

control. Only the kernel may issue upcalls to applications. Section 3.5.3 describes end-to-

end scenarios via representative ACGs.

3.5.1 Capturing User Intent

Supporting ACGs

In our system, resource monitors are implemented as separate applications that provide

access-control and UI logic and expose a set of access control gadgets.

The EmbedACG() system call allows other applications to embed ACGs. These applica-

tions must specify where, within the application’s portion of the display, the gadget should

be displayed, the desired user-owned resource, and optionally the type of gadget (including

limited customization parameters) and the duration of access, depending on the set of gad-

gets exposed by the RM. For instance, to allow a user to take a picture, an application makes

an EmbedACG((x, y), "camera", "take-picture") call in its UI code, where “camera” is

the resource and “take-picture” is the gadget type (as opposed to, e.g., “configure-settings”

or “take-video”). When a user clicks on an ACG, the appropriate RM is notified with
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an InputEvent() upcall that includes the application’s ID and a handle for the running

instance (both anonymous).

The kernel starts the appropriate RM process (if necessary), binds these embedded

regions to that RM, and notifies it of a new ACG with the StartUp() upcall.

Supporting Permission-Granting Input Sequences

We focus our implementation on the most commonly used permission-granting input se-

quences in desktop systems: keyboard shortcuts for the clipboard (via cut, copy, paste)

and mouse gestures for the transient clipboard (via drag-and-drop). These implementation

details represent the changes required for any sequence (e.g., Ctrl-P, or voice commands).

We modified the kernel to route mouse and keyboard events to our sequence-detection

logic. Once a permission-granting sequence is detected, the kernel passes the recognized

event (and information about the receiving application) to the appropriate RM with the

InputEvent() upcall.

Our clipboard RM registers common keyboard shortcuts for cut, copy, and paste (Ctrl-X,

Ctrl-C, and Ctrl-V). To implement drag-and-drop, the kernel identifies a drag as a Mouse-

Down followed by a MouseMove event on a draggable object (determined by IsDraggable()

upcalls to the object’s owner), and it identifies the subsequent MouseUp event as a drop. To

support existing visual feedback idioms for drag-and-drop, our implementation dispatches

IntermediateEvent() upcalls to applications during a drag action.

3.5.2 Acting on User Intent

When an RM receives an InputEvent() upcall (i.e., user intent is captured), it grants access

in one of two ways, depending on the duration of the granted access.

Session or permanent access: set access control state. When an application is

granted session or permanent access to a resource, the resource monitor stores this per-

mission in an access control list (ACL). This permission is revoked either directly by the

user, or (in the session-based case) when the application exits and the RM receives an

EmbeddingAppExit() upcall. While the permission remains valid (i.e., is reflected in the
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ACL), the RM allows the application to invoke its resource access APIs.

One-time access: discrete content transfer. When an application is granted one-

time access, however, it is not granted access to the resource’s API directly. Rather, the

RM mediates the transfer of one content item from the source to the destination. This

design ensures that the user’s one-time intent is accurately captured. For example, when an

application receives one-time camera access, it should not be able to defer its access until

later, when the camera may no longer be directed at the intended scene. To this end, the

RM immediately issues an InitContentTransfer() system call, prompting the kernel to

issue a PullContent() upcall to an application writing to the resource (e.g., a document to

print), or a PushContent() call to an application reading from the resource (e.g., a picture

the RM obtained from the camera).

3.5.3 End-to-End: Representative ACGs

We implemented ACGs for a representative set of user-driven access control scenarios, cov-

ering device access, cross-application data sharing, and private data access.

One-time ACGs. We implemented a camera RM that exposes a one-time ACG allowing

the user to take a photo and immediately share it with the application embedding the ACG.

To capture the photo, the RM leverages existing system camera APIs. When a user clicks

on the gadget, the RM (1) issues a call to the camera to take a photo, and (2) issues an

InitContentTransfer() call to the kernel to transfer the photo to the receiving application.

Similarly, our clipboard RM exposes one-time ACGs for copy, cut, and paste.

The database of a user’s form autocomplete entries (e.g., his or her name, address, and

credit card numbers) often contains private data, so we consider it a user-owned resource.

We implemented an autocomplete RM that exposes one-time autocomplete ACGs — text

boxes of various types, such as last-name, credit-card, and social-security-number. When

the user finishes interacting with an autocomplete ACG (entering text, selecting from a

drop-down menu, or leaving it blank) and leaves the ACG window, the autocomplete

RM receives a LostFocus() upcall. It uses this as a signal to update the autocomplete

database (if appropriate) and to pass this text on to the embedding application with an
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InitContentTransfer() call.

Finally, we implemented a composition ACG, combining one-time camera and one-time

geolocation access.

Session and permanent ACGs. We implemented a session-based geolocation ACG, al-

lowing the user to start and stop access (e.g., when using a maps application for navigation).

When the user starts a new session, the geolocation RM updates its access control state to

allow the application embedding the ACG to access geolocation APIs directly. The appli-

cation can make GetCurrentLocation() calls via the RM until the user ends the session

(or closes the application). These mechanisms also support permanent access.

Permission-granting input sequences. As described, we implemented permission-

granting input sequences for copy-and-paste and for drag-and-drop. To add support for

drag-and-drop, we extended the kernel to make the appropriate IntermediateEvent() up-

calls. Since drag-and-drop is fundamentally only a gesture, the drag-and-drop RM exposes

no gadgets; it merely mediates access to the transient clipboard.

ACG-embedding and application-specific ACGs. As a more complex example, we

implemented a content-picking ACG (a generalization of “file picker”), which an application

can embed to load in the user’s data items from other applications. We have two security

goals in designing this ACG:

1. Least-privilege access to user content: Only the requesting application receives access

to only the data item picked by the user. The content-picking RM has no access to

the picked item.

2. Minimal attack surface: Since the content picker must retrieve content listings from

each content provider application, we aim to minimize the attack surface in interac-

tions between the RM and content providers.

Figure 3.7 illustrates our design for content picking. Each content provider exposes an

application-specific ACG (Section 3.4.4) called a content-view ACG, which allows least-

privilege, user-driven access to user-picked data items in that content provider. Such a

content-view ACG allows each content provider to intelligently control user interactions
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User’s View Application 

Content view from Provider 1 

Content view from Provider 2 

Content view from Provider n 

Content selection 

… 

System’s View 

Kernel 

EmbedACG(contentpick); 

Application 

Content Pick Resource Monitor 

Content Provider 
Resource Monitors 

Choose Content… 

EmbedACG(“content provider 1”); 

EmbedACG(“content provider 2”); 
… 

EmbedACG(“content provider n”); 

“Choose Content…” ACG 

Content Selection ACG 

Content View ACG 

Figure 3.7: Content Picking via ACGs. An application may embed a content-picking

ACG (the “Choose content...” button above). When the user clicks on this button, the

content-picking RM presents a content-selection ACG, which displays available content by

embedding application-specific ACGs from each content provider. The user may select

content from one of these content-view ACGs, thereby enabling the original embedding

application to access it.

with the content based on its semantics (e.g., Foursquare check-ins or Facebook friends are

specialized types of content that would lose richness if handled generically).

The content-picking RM exposes two ACGs, a content-picking ACG and a content-

selection ACG. The content-picking ACG is a button that opens the content-selection ACG

in response to a user click. The content-selection ACG embeds content providers’ content-

view ACGs. By isolating content-view ACGs from the content-picking RM/ACGs, we

minimize the attack surface of the content-picking RM.

The content-selection ACG is special in that it contains other ACGs (the content-view

ACGs from content providers). Thus, when a user interacts with a content-view ACG, its

content provider grants access to the application embedding the content-picking ACG, but

not to the content-picking RM. More concretely, when the user selects a data item from a

content-view ACG, the kernel issues a PullContent() upcall to the content provider and

a PushContent() upcall to the application embedding the content-picking ACG.
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We implemented a content-picking RM that supports both the “open” and “save” func-

tionality, with the latter reversing the destinations of PullContent() and PushContent()

upcalls. To evaluate the feasibility of using this RM with real-world content providers,

we implemented an application-specific content-view ACG for Dropbox, a cloud storage

application. We leveraged Dropbox’s public REST APIs to build an ACG that displays

the user’s Dropbox files using a .NET TreeView form; it implements PushContent() and

PullContent() upcalls as uploads to and downloads from Dropbox, respectively.

Rather than browsing for content, users may wish to search for a specific item. We ex-

tended the content-picking RM to also support search by letting users type a search query

in the content-selection ACG and then sending the query to each content provider. Con-

tent providers respond with handles to content-view ACGs containing results, along with

relevance scores that allow the content-selection ACG to properly interleave the results.

Note that we only implemented the access-control actions, not the algorithm to appropri-

ately rank the results. Existing desktop search algorithms would be suitable here, though

modifications may be necessary to deal with applications that return bad rankings.

3.6 Evaluation

Our evaluation shows that (1) illegitimate access to user-owned resources is a real problem

today and will likely become a dominant source of future vulnerabilities. User-driven ac-

cess control eliminates most such known vulnerabilities — 82% for Chrome, 96% for Firefox

(Section 3.6.1). (2) Unlike existing models, our least-privilege model matches users’ expecta-

tions (Section 3.6.2). (3) A survey of top Android applications shows that user-driven access

control offers least-privilege access to user-owned resources for 95% of applications, signif-

icantly reducing privacy risks (Section 3.6.3). Indeed, (4) attackers have only very limited

ways of gaining unauthorized access in our system (Section 3.6.4). We find that (5) system

developers can easily add new resources (Section 3.6.5), that (6) application developers can

easily incorporate user-driven access control (Section 3.6.6), and that (7) our design does

not unreasonably restrict customization (Section 3.6.7). (8) Finally, the performance impact

is negligible (Section 3.6.8).
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% We Eliminate by Design
Vulnerability Class Example Chrome Bugs Firefox Bugs

User data leakage getData() can retrieve fully qualified path
during a file drag.

90% (19 of 21) 100% (18 of 18)

Local resource DoS Website can download unlimited content
to user’s file system.

100% (10 of 10) 100% (1 of 1)

Clickjacking Security-relevant prompts exploitable via
timing attacks.

100% (4 of 4) 100% (1 of 1)

User spoofing Application-initiated forced mouse drag. 100% (3 of 3) 100% (4 of 4)
Cross-app exploits Script tags included in copied and pasted

content.
0% (0 of 6) 50% (1 of 2)

Total 82% (36 of 44) 96% (25 of 26)

Table 3.3: Relevant Browser Vulnerabilities. We categorize Chrome [26] and Fire-

fox [120] vulnerabilities that affect user-owned resources; we show the percentage of vulner-

abilities that user-driven access control eliminates by design.

3.6.1 Known Access Control Vulnerabilities in Browsers

We assembled a list of 631 publicly-known security vulnerabilities in recent versions of

Chrome (2008-2011) [26] and Firefox (v. 2.0-3.6) [120]. We classify these vulnerabilities and

find that memory errors, input validation errors, same-origin-policy violations, and other

sandbox bypasses account for 61% of vulnerabilities in Chrome and 71% in Firefox. Previous

work on isolating web site principals (e.g., [61, 172]) targets this class of vulnerabilities.

Our focus is on the remaining vulnerabilities, which represent vulnerabilities that cross-

principal isolation will not address. Of those remaining, the dominant category (30% in

Chrome, 35% in Firefox) pertains to access control for user-owned resources. We sub-

categorize these remaining vulnerabilities and analyze which can be eliminated by user-

driven access control. Table 3.3 summarizes our results.

User data leakage. This class of vulnerability either leads to unauthorized access to locally

stored user data (e.g., unrestricted file system privileges) or leakage of a user’s data across

web applications (e.g., focus stealing to misdirect sensitive input). User-driven access control

only grants access based on genuine user interaction with ACGs or permission-granting input

sequences.

Nine of the 21 vulnerabilities in Chrome are related to autocomplete functionality. The
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two that we do not address by design are errors that could be duplicated in an autocomplete

RM’s implementation (e.g., autocompleting credit card information on a non-HTTPS page).

Local resource DoS. These vulnerabilities allow malicious applications to perform denial-

of-service attacks on a user’s resources, e.g., downloading content without the user’s consent

to saturate the disk. With user-driven access control, such a download can proceed only

following genuine user interaction with ACGs or permission-granting input sequences.

Clickjacking. Both display- and timing-based clickjacking attacks are eliminated by the

fact that each ACG’s UI stack is completely controlled by the kernel and the RM (Sec-

tion 3.4.1). In particular, our system disallows transparent ACGs and enforces a delay on

the activation of ACGs when they appear.

User spoofing. A fundamental property of user-driven access control is that user actions

granting access cannot be spoofed. This property eliminates user spoofing vulnerabilities in

which malicious applications can gain access by, e.g., issuing clicks or drag-and-drop actions

programmatically.

Cross-application exploits. In cross-application exploits, an attacker uses content trans-

ferred by the user to attack another application (e.g., copying and pasting into vulnerable

applications allows cross-site scripting). As per our threat model (Section 3.3.3), we consider

the hardening of applications to malicious input to be an orthogonal problem. However,

we do eliminate one such issue in Firefox: it involves a malicious search plugin executing

JavaScript in the context of the current page. This attack is eliminated in our system be-

cause cross-application search is possible only via the search RM, which is isolated from its

embedding application.

3.6.2 User Expectations of Access Semantics

We conducted two surveys to understand user expectations of access semantics. These

studies adhered to human subjects research requirements of our institution.

As part of a preliminary online user survey with 139 participants (111 male and 28 female,

ages 18-72), we asked users about their expectations regarding clipboard access. We found
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that most users believe that copy-and-paste already has the security properties that we

enable with user-driven access control. In particular, over 40% (a plurality, p < 0.0001) of

users believe, wrongly, that applications can only access the global clipboard when the user

pastes. User-driven access control would match this expectation.

Following these preliminary results, we designed a second online user survey to assess

user expectations regarding accesses to a broader set of resources and a variety of access

durations. We administered this survey to 186 users (154 male and 31 female, aged 18 to

over 70). Unless otherwise noted, all of the results reported in this section are statistically

significant according to Pearson’s chi-squared test (p < 0.05).

The survey consisted of a number of scenarios in which applications access user-owned

resources, accompanied by screenshots from applications. We examined location access,

camera access, and the ability to send SMS across one-time, session, and permanent du-

rations. In each scenario, we asked questions to determine (1) when users believe the

applications can access the resource in question, and (2) when users believe the application

should be able to access it.

We used screenshots from existing Android applications for better ecological validity —

using these instead of artificial applications created for the purposes of this study allows us

to evaluate real user expectations when interacting with real applications. 171 (92%) of our

participants reported having used a smartphone before, 96 (52%) having used Android.

One-time and session access. For one-time and session access to resources, we asked

users about whether or not applications can/should access resources before and after inter-

actions with related UI elements. For example, we asked users whether a map application

can/should access their location before they click the “current location” button; we then

asked how long after that button press the application can/should access their location. Fig-

ure 3.8 summarizes the results for before the button press, where we find that, on average

across all resources, most users believe that applications cannot — and certainly should not

be able to — access the resource before they interact with the relevant UI. These trends are

similar for after the button press. Note that participants were less sensitive about location

access, a trend we address below.
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Figure 3.8: User Expectations of One-Time and Session Access. For one-time

(location, camera, SMS) and session-based (location, camera) access scenarios, participants

were asked (1) can the application access the resource before they press the button, and (2)

should it be able to access the resource before they press the button.

To address possible ordering effects, we randomly permuted the order in which we asked

about the various resources, as well as about the various durations. We found that question

order had no statistically significant effect on responses, except in the case of SMS access.

There, we found that participants were statistically significantly more sensitive about an

application’s ability to send SMS if they were first asked about the camera and/or location.

Despite ordering effects, we find that users are less concerned about applications access-

ing their location than about accesses to the camera or sending SMS. More formally, we per-

formed a Mixed Model analysis, modeling ParticipantID as a random effect. We tested for

an interaction between Order and Resource, finding no effect (F (4, 4) = 1.5435, p = 0.1901).

We did find Resource to be significant (F (2, 2) = 9.8419, p < 0.0001), leading us to inves-

tigate pairwise differences, where we find lower sensitivity to location access. Indeed, in

both one-time and session-based scenarios, most users indicated that applications can ac-

cess their location uncorrelated to UI interactions — the opposite of their expectations in

the camera and SMS scenarios. While most users do believe that these location accesses
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should be tied to UI interactions, this concern was still statistically significantly less than for

the camera or SMS. We hypothesize that users may better understand (or consider riskier)

the consequences of unwanted access to camera or SMS.

Permanent access. To evaluate users’ expectations of permanent access, we presented

users with two scenarios: one in which the application pops up a reminder whenever the user

is in a preconfigured location, and one in which the application sends an SMS in response to

a missed call. 69% of users identified the first application as requiring permanent location

access; nevertheless, only 59% of users believed that it should have this degree of access.

In the case of the SMS-sending application, 62% of users (incorrectly) believe that the

application is only permitted to send SMS when the configured condition is met (a call is

missed); 74% of users believe this should be the case. This finding supports our design of a

schedule ACG as described in Section 3.4.2.

These results allow us to conclude that user-driven access control — unlike existing sys-

tems — provides an access model that largely matches both users’ expectations and their

preferences regarding how their in-application intent maps to applications’ ability to access

resources.

3.6.3 Access Semantics in Existing Applications

Using 100 popular Android applications (the top 50 paid and the top 50 free applications as

reported by the Android market on November 3, 2011), we evaluated how often applications

need permanent access to a resource to perform their intended functionality. We focused

on the camera, location (GPS and network-based), the microphone, the phone’s calling

capability, SMS (sending, receiving, and reading), the contact list, and the calendar. We

examined accesses by navigating each application’s menu until we found functionality related

to each resource requested in its manifest.

Though Android grants an application permanent access to any resource specified in

its manifest, we find that most resource accesses (62% of 143 accesses observed across 100

applications) require only one-time or session access in direct response to a user action

(UI-coupled). Table 3.4-A summarizes these results. By using an ACG to guide these
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Access Semantics (A)
UI-Decoupled UI-Coupled Unrelated to primary

(Permanent) (Scheduled) (One-Time/Session) functionality (e.g., ads) Unknown

Camera 0 0 7 0 2
Location (GPS) 1 3 13 3 1
Location (Network) 0 3 9 8 2
Microphone 0 0 14 0 0
Send SMS 0 0 3 0 2
Receive SMS 5 0 0 0 0
Read SMS 2 2 3 0 2
Make Calls 0 0 8 0 2
Intercept Calls 1 0 0 0 0
Read Contacts 2 2 18 0
Write Contacts 0 0 13 0 2
Read Calendar 1 1 0 0 1
Write Calendar 0 0 1 0 3

Total 12 (8%) 11 (8%) 89 (62%) 11 (8%) 20 (14%)

Customization (B)
Limited Arbitrary

Camera 4 1
Location (GPS)

5 5
Location (Network)
Microphone 6 4
Send SMS 3 0
Receive SMS N/A N/A
Read SMS 0 2
Make Calls 8 0
Intercept Calls N/A N/A
Read Contacts

14 2
Write Contacts
Read Calendar 0 0
Write Calendar 0 1

Total 40 (73%) 15 (27%)

Table 3.4: Analysis of Existing Android Applications. We analyzed 100 Android

applications (top 50 paid and top 50 free), encompassing 143 individual resource accesses.

In Table 3.4-A, we evaluate the access semantics required by applications for their intended

functionality. We find that most accesses are directly triggered by user actions (UI-coupled).

Table 3.4-B examines the customization of existing UIs related to resource access. Entries

marked N/A indicate resources for which access is fundamentally triggered by something

other than a user action (e.g., incoming SMS). We find that limited customization suffices

for most existing applications. Note that some accesses could be handled via a UI-coupled

action, but do not currently display such a UI. Thus, the customization columns do not

always sum to the UI-coupled column.
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interactions, applications would achieve least-privilege access. Indeed, 91 of the applications

we examined require only UI-coupled access to all user-owned resources. These results

indicate that user-driven access control would greatly reduce applications’ ability to access

resources compared to the manifest (permanent access) model currently used by Android.

Only nine applications legitimately require UI-decoupled access to at least one resource

to provide their intended functionality. We describe these scenarios here and present tech-

niques to reduce the need for permanent access in some cases:

• Scheduled Access. Some applications access resources repeatedly, e.g., the current

location for weather or user content for regular backups. While these accesses (8%

of accesses we examined and 48% of all UI-uncoupled accesses) must occur funda-

mentally without direct user interaction, these applications could use schedule ACGs

as described in Section 3.4.2 to nevertheless achieve least-privilege. This technique

reduces the number of applications requiring permanent access from nine to six.

• Display Only. Some permanent access scenarios simply display content to the user.

For example, many home screen replacement applications require permanent access to

the calendar or the ability to read SMS because these data items are displayed on the

home screen. At the expense of customization, these applications could simply embed

relevant applications that display this content (e.g., the calendar). This technique

would prevent another application from requiring permanent access.

• Event-Driven Access. Certain event-based permissions fundamentally require UI-

decoupled permanent access. For example, receiving incoming SMS (e.g., by anti-virus

applications or by SMS application replacements) and intercepting outgoing calls (e.g.,

by applications that switch voice calls to data calls) are fundamentally triggered by

events other than user input.

Overall, we find that only five (5%) of the applications we examined truly require full

permanent access to user-owned resources. With user-driven access control, the other 95%

of these applications would adhere to least-privilege and greatly reduce their exposure to

private user data when not needed.
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3.6.4 Gaining Unauthorized Access in Our System

In our system, applications can gain unauthorized access by (1) launching social-engineering

attacks against users or (2) abusing permanent (non-least-privilege) access.

On the one hand, ACGs and permission-granting input sequences may make it easier —

compared to more intrusive security prompts — for malicious developers to design social

engineering attacks. For example, a malicious application may use geolocation ACGs as

circle buttons in a tic-tac-toe game, or define an application-specific input sequence that

coincides with a permission-granting sequence (e.g., “Push Ctrl-V to win the game!”).

However, ACGs and permission-granting input sequences are superior to prompts in

their usability and least-privilege properties. Studies suggest that prompts are ineffective

as security mechanisms, as users learn to ignore and click through them [118]. Furthermore,

usability problems with prompts make them undesirable in real systems that involve frequent

access control decisions. Indeed, even the resource access prompts in iOS are generally shown

only the first time an application attempts to access a resource, sacrificing least-privilege and

making these prompts closer to manifests in terms of security properties. Finally, prompts

are also vulnerable to social engineering attacks.

Social engineering indicates an explicit malicious intent (or criminal action) from the

application vendor, who is subject to legal actions upon discovery. This is in contrast to

applications that request unnecessary permanent access or that take advantage of non-least-

privilege systems (e.g., to leak location to advertisers) whose malicious intent is much less

clear.

Recall from Section 3.4.2 that our system mitigates the permanent access problem by

encouraging developers to avoid requesting unnecessary permanent access and by allowing

users to revoke it. With just 5% of top Android applications requiring permanent access

(Section 3.6.3), these techniques seem practical. The remaining 95% of applications can

achieve least-privilege with user-driven access control.
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Extensibility (A) Ease of Use (B)
Kernel RM Browser MS Word

Autocomplete N/A 210 35 N/A
Camera Access N/A 30 20 25
Content Picking N/A 285 100 15
Copy-and-Paste N/A 70 70 60
Drag-and-Drop 70 35 200 45
Global Search N/A 50 10 N/A
Geolocation Access N/A 85 15 N/A
Composed Camera+Geolocation N/A 105 20 N/A

Table 3.5: Evaluation of Extensibility and Ease of Use. This table shows the approxi-

mate lines of C# code added to the system (Table 3.5-A) and to applications (Table 3.5-B).

3.6.5 Extensibility by System Developers

In general, to support a new user-owned resource in the system, a system developer must

implement a resource monitor and its associated ACGs. Table 3.5-A shows the development

effort required to implement the example ACGs described in Section 3.5.3, measured in lines

of C# code. Adding support for a new resource rarely requires kernel changes — only drag-

and-drop required minor modifications to the kernel. RM implementations were small and

straightforward, demonstrating that our system is easy to extend.

3.6.6 Ease of Use by Application Developers

We found that it was easy to modify two existing applications — the browser runtime and

Microsoft Word 2010 — to utilize user-driven access control. Table 3.5-B summarizes the

implementation effort required.

For the browser, we used a wrapper around the rendering engine of an existing commer-

cial browser to implement generic support for copy-and-paste, drag-and-drop, camera and

geolocation access, content picking, search, and autocomplete. To let web applications easily

embed ACGs, we exposed the EmbedACG() system call as a new HTML tag. For example, a

web application would embed a camera ACG with the tag <acgadget resource="camera"

type="take-picture">. We converted several upcalls into their corresponding HTML5

events, such as ondrop or ondragover. Overall, our browser modifications consisted of a

reasonable 450 lines of code; the relevant content is thus exposed to the underlying HTML,
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requiring no additional effort by the web application developer.

We also added support for certain resources into Microsoft Word by writing a small

C# add-in. We replaced the default cut, copy, and paste buttons with our ACGs, and

implemented the clipboard and drag-and-drop upcalls to insert content into the current

document and to send the currently-selected content to the kernel as necessary. We also

embed our camera ACG into Word’s UI and modified Word to handle camera callbacks

by inserting an incoming photo into the current document. Finally, we added our content

picking ACGs to Word and hooked them to document saving and opening functionality.

Our add-in only required about 145 total lines of C# and demonstrates that even large

real-world applications are easy to adapt to take advantage of user-driven access control.

3.6.7 Customization: Security and Developer Impact

We evaluate the danger of arbitrary customization and the effect of limiting customization

in today’s applications.

Unvetted arbitrary customization. In our design, ACGs offer limited customization

options, but application developers may submit an arbitrarily customized version of an ACG

to a vetting process (see Section 3.4.1). Other systems, such as the EROS Trusted Window

System (EWS) [147], do not require such vetting. In particular, EWS allows an application

to designate arbitrary portions of the screen as copy and paste buttons. The application

controls the entire display stack, except for the cursor, which is kernel-controlled. This

design allows for full application customizability but risks a malicious application using its

freedom to deceive the user.

To evaluate the importance of preventing such an attack, we included in the previously-

described 139-participant user study (Section 3.6.2) a task in which the cursor was trust-

worthy but the buttons were not. As suggested in EWS, the cursor, when hovering over

a copy or paste button, displayed text indicating the button’s function. Most users (61%)

reported not noticing the cursor text. Of those that noticed it, only 44% reported noticing

attack situations (inconsistencies between the cursor and the button texts). During the
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Figure 3.9: Customization in Android UIs. Examples of UI elements corresponding to

microphone access. The ones on the left could be accommodated with a standard ACG that

offers limited customization options (e.g., color). The ones on the right require significant

customization, or a change to the application’s UI.

trials, users by and large followed the button text, not the cursor, succumbing to 87% of

attack trials. Further, introducing the cursor text in the task instructions for about half

of the participants did not significantly affect either noticing the cursor (Pearson’s chi-

squared test: χ2(N = 130) = 2.119, p = 0.1455) or success rate (Mixed Model analysis:

F (1, 1) = 0.0063, p = 0.9370). Thus, it is imperative that the entire UI stack of access-

granting features be authentic, as is the case with our ACGs.

Limited customization. To evaluate the sufficiency of limited customization described in

Section 3.4.1, we analyzed the 100 Android applications previously described. We examined

the degree of customization of UI elements related to accesses to the camera, location

(GPS and network-based), the microphone, the phone’s calling capability, SMS (sending,

receiving, and reading), the contact list, and the calendar.

The results of our evaluation are summarized in Table 3.4-B. In general, we find min-

imal customization in UI elements related to resource access (e.g., a camera button). In

particular, for each UI element we identified a commonly used canonical form, and found

that 73% of the UI elements we examined differed only in color or size from this canonical

form (using similar icons and text). As an example, Figure 3.9 shows the degree of cus-

tomization in buttons to access the microphone. We note that applications developers may

be willing to replace more than 73% of these UI elements with standardized ACGs; further
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study is needed to evaluate the willingness of developers to use ACGs in their applications.

Nevertheless, we find that the majority of today’s UI elements already require only limited

customization.

We observed only three types of UI elements associated with multiple resource accesses:

microphone with camera in two video chatting applications (e.g., Skype), microphone with

location in two applications that identify songs and tag them with the current location (e.g.,

Shazam), and camera with location in one camera application. These findings support our

decision to limit composition (Section 3.4.1).

3.6.8 Performance

We evaluate the performance of user-driven access control, focusing our investigation on

drag-and-drop for two reasons: (1) its dataflow is similar or identical to the dataflow of all

one-time access-control abstractions and thus its performance will be indicative, and (2) the

usability of drag-and-drop (a continuous, synchronous action) is performance-sensitive.

In particular, we evaluate the performance of intermediate drag-and-drop events, which

are fired on every mouse move while the user drags an object. We compared our performance

to that of Windows/COM for the same events. We ran all measurements on a computer

with a dual-proc 3GHz Xeon CPU with 12GB RAM, running 64-bit Windows 7.

In both systems, we measured the time from the registration of the initial mouse event

by the kernel to the triggering of the relevant application event handler. The difference was

negligible. In Windows, this process took 0.45 ms, averaged over 100 samples (standard

deviation 0.11 ms); in our system, it averaged 0.47 ms (standard deviation 0.22 ms).

3.7 Related Work

Philosophically, user-driven access control is consistent with Yee’s proposal to align usabil-

ity and security in the context of capability systems [178]. We presented state-of-the-art

permission models on commercial client platforms, such as iOS, Android, and browsers, in

Section 3.2. We address other related approaches here.

User action requirements. Several approaches provide in-context permission granting,
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relying on user actions as permission-granting triggers. These user action requirements are

usually simple, such as a click or keystroke, but may extend to reserved shortcuts (such as

Ctrl-V for paste). These designs may be seen as predecessors of our work.

For example, Flash introduced a user-initiated action requirement [5], restricting paste

to the Ctrl-V shortcut and requiring a click or keystroke for other permissions (such as

fullscreen or file system access). Silverlight employs a similar model [114]. While more

user friendly than prompts, a simple user action requirement can be easily circumvented by

an application that asks (or waits for) the user to perform an unrelated (but permission-

granting) action.

Several research systems have also advocated the use of specific reserved gestures for

access to the clipboard (similar to Flash’s Ctrl-V requirement). For example, the EROS

Trusted Window System (EWS) [147], the Qubes OS [142], and Tahoma [31] advocate

reserved gestures for copy-and-paste. NitPicker [51] and EWS also support drag-and-drop,

and EWS additionally supports copy-and-paste via a user click (on a system-controlled

transparent window overlaid on an application’s custom copy or paste button).

Finally, CapDesk [116] and Polaris [157] are experimental capability-based desktop sys-

tems that apply a user action requirement to file picking. Both give applications minimal

privileges, but allow users to grant applications permission to access individual files via a

“powerbox” (a trusted system file picker). Recent systems like Mac OS X Lion [8] and

Windows 8 [110] have adopted this approach for file picking.

In our work, we generalize these ideas beyond the clipboard and the file system to all

sensitives resources, and we design a system that can accurately link a user’s action to his

or her permission-granting intent.

Inferring user intent. Beyond a simple user action requirement, some researchers have

explored systems that directly infer a user’s permission-granting intent. For example, Shirley

and Evans [149] propose a system (prototyped only for file resources) that tries to infer

a user’s access control intent from the history of user behavior. BLADE [96] attempts to

verify a user’s intent to download a file by detecting user interactions with browser download

dialogs. In both cases, the systems tries to infer user intent from his or her interactions
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with an existing dialog; in our work, we design a new type of interaction from which the

system can robustly capture user intent without the need for inference.

Visualization and auditing. In addition to — or instead of — other permission-granting

mechanisms, some designs allow users to visualize current permission use or audit access

after the fact. For example, many cameras (such as on laptops) light up an LED while

recording (although users cannot necessarily determine which application is using the cam-

era). Research proposals at application granularity include “sensor-access widgets” [68],

user interface elements overlaid on an application that display feedback about the applica-

tion’s current access to the corresponding sensor, and that act as a control point for the

user to grant or revoke access. Other work [48] has proposed automatically allowing appli-

cations to perform actions that have low severity or are easily reverted (e.g., changing the

home screen wallpaper), and coupling this ability with an auditing mechanism that allows

users to identify misbehaving applications. Such visualization and auditing techniques can

complement the approach that we take in our work.

Mechanism without policy. Finally, a host of prior work has explored access control

mechanisms without specifying how the corresponding policies should be captured from

user actions. For example, multi-level security systems like SELinux [124] classify informa-

tion and users into sensitivity levels to support mandatory access control security policies.

Information flow control techniques (e.g., [181]) can provide OS-level enforcement of infor-

mation flow policies, and have been applied in modern contexts such as smartphones (e.g.,

TaintDroid [42] provides information flow tracking for Android).

Though these mechanisms can help enforce access control policies, they do not address

the question of how users should specify these policies. Studies show that access control

policies are notoriously difficult to configure correctly, both among system administration

experts [32] as well as among ordinary users attempting to manage their own data (e.g.,

on Facebook [100]). The question of how to allow users to specify such policies in a usable

way, without requiring them to constantly understand and manage low-level access control

decisions, is the focus of this work.
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3.8 Summary

In this chapter, we advocated user-driven access control to address the challenge of ap-

plication permission granting in modern client platforms. Unlike existing models (such as

manifests and system prompts) where the system has no insight into the user’s behavior in

an application, we allow an application to build privileged, permission-granting user actions

into its own context. This enables an in-context, non-disruptive, and least-privileged per-

mission system. We introduce access control gadgets as privileged, permission-granting UIs

exposed by user-owned resources. Together with permission-granting input sequences (such

as drag-and-drop), they form the complete set of primitives to enable user-driven access

control in modern operating systems.

Our evaluation shows that illegitimate access to user-owned resources is a real problem

today and will likely become a dominant source of future vulnerabilities. User-driven ac-

cess control can potentially eliminate most such vulnerabilities (82% for Chrome, 96% for

Firefox). Our user studies indicate that users expect least-privilege access to their resources,

which the existing models fail to deliver, and which user-driven access control can offer.

By studying access semantics of top Android applications, we find that user-driven access

control offers least-privilege access to user-owned resources for 95% of the applications, sig-

nificantly reducing privacy risks. Our implementation experience suggests that it is easy

for system developers to add support for new resource types and for application developers

to incorporate ACGs into their applications. With these results, we advocate that modern

client platforms adopt user-driven access control for scenarios in which explicit user actions

are common. In Chapter 5, we develop another permission granting model, world-driven

access control, for platforms and applications in which user interactions are sparse.
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Chapter 4

SECURING EMBEDDED USER INTERFACES IN MODERN
OPERATING SYSTEMS

In Chapter 3, we introduced access control gadgets (ACGs) — system-trusted embedded

user interface elements — to allow the operating system to capture a user’s implicit intent

to grant a permission to an application. For the user’s intent to be captured authentically,

we discussed several ad-hoc measures to protect ACGs from potentially malicious embed-

ding applications. However, the need to secure embedded user interfaces applies not only

to ACGs: today’s web and smartphone applications commonly embed third-party user in-

terfaces like advertisements and social media widgets. In this chapter, we thus consider

more broadly the security and privacy issues associated with embedded third-party user

interfaces, further tackling the first key challenge, embedded third-party principals, iden-

tified in Chapter 1. These ideas first appeared in a 2012 paper on security requirements

and techniques for user interface toolkits [136] and a 2013 paper applying and refining these

techniques in the context of Android, a smartphone operating system [137].

4.1 Overview

Modern web and smartphone applications commonly embed third-party content within

their own interfaces. Websites embed iframes containing advertisements, social media wid-

gets (e.g., Facebook’s “Like” or Twitter’s “tweet” button), Google search results, or maps.

Smartphone applications include third-party libraries that display advertisements or provide

billing functionality.

Including third-party content comes with potential security implications, both for the

embedded content and the host application. For example, a malicious host may attempt to

eavesdrop on input intended for embedded content or forge a user’s intent to interact with

it, either by tricking the user (e.g., by clickjacking) or by programmatically issuing input

events. On the other hand, a malicious embedded principal may, for example, attempt to
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take over a larger display area than expected.

The web security model has evolved over time to address these and other threats. For

example, the same-origin policy prevents embedded content from directly accessing or ma-

nipulating the parent page, and vice versa. As recently as 2010, browsers added the sandbox

attribute for iframes [14], allowing websites to prevent embedded content from running

scripts or redirecting the top-level page. However, other attacks — like clickjacking — re-

main a serious concern. Malicious websites frequently mount “likejacking” attacks [154] on

the Facebook “Like” button, in which they trick users into sharing the host page on their

Facebook profiles. If Facebook suspects a button as part of such an attack, it asks the user

to confirm any action in an additional popup dialog [47] — in other words, Facebook falls

back on a non-embedded interface to compensate for the insecurity of embedded interfaces.

While numerous research efforts have attempted to close the remaining security gaps

with respect to interface embedding on the web [70, 159, 172], they struggle with main-

taining backwards compatibility and are burdened with the complexity of the existing web

model. By contrast, Android, which to date offers no cross-application embedding, offers a

compelling opportunity to redesign secure embedded interfaces from scratch.

Today, applications on Android and other mobile operating systems cannot embed inter-

faces from another principal; rather, they include third-party libraries that run in the host

application’s context and provide custom user interface elements (such as advertisements).

On the one hand, these libraries can thus abuse the permissions of or otherwise take ad-

vantage of their host applications. On the other hand, interface elements provided by these

libraries are vulnerable to manipulation by the host application. For example, Android

applications can programmatically click on embedded ads in an attempt to increase their

advertising revenue [136]. This lack of security also precludes desirable functionality from

the Android ecosystem. For example, the social plugins that Facebook provides on the web

(e.g., the “Like” button or comments widget) are not available on Android.

Previous research efforts for Android [131, 148] have focused only on one interface em-

bedding scenario: advertising. As a result, these systems, while valuable, do not provide

complete or generalizable solutions for interface embedding. For example, to our knowledge,

no existing Android-based solution prevents a host application from eavesdropping on input
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to an embedded interface.

In this chapter, we explore what it takes to support secure embedded UIs, first in a

user interface toolkit architecture in general (Section 4.4), and then on Android specifically

(Sections 4.5–4.6). We outline UI-level security threats that motivate our development of a

set of desired security properties for embedded user interfaces (Section 4.2), along with the

techniques to achieve these properties. We systematically analyze existing systems, includ-

ing browsers, with respect to whether and how they provide these properties (Section 4.3).

Informed by this analysis, we modify the Android framework to support cross-principal in-

terface embedding in a way that meets our security goals. We evaluate our implementation

using case studies that rely on embedded interfaces (Section 4.7), including: (1) advertise-

ment libraries that run in a separate process from the embedding application, (2) Facebook

social plugins, to date available only on the web, and (3) access control gadgets (introduced

in Chapter 3) that allow applications to access sensitive resources (like geolocation) only in

response to real user input. Through our implementation experience, we consolidate and

evaluate approaches from our own and others’ prior work.

Today’s system developers wishing to support secure embedded user interfaces have no

systematic set of techniques or criteria upon which they can draw. Short of simply adopting

the web model by directly extending an existing browser — which may be undesirable for

many reasons, including the need to maintain backwards compatibility with the existing web

ecosystem and programming model — system developers must (1) reverse-engineer existing

techniques used by browsers, and (2) evaluate and integrate research solutions that address

remaining issues. In addition to presenting the first secure interface embedding solution for

Android, this chapter provides a concrete, comprehensive, and system-independent set of

criteria and techniques for supporting secure embedded user interfaces.

4.2 Motivation and Goals

To motivate the need for secure embedded user interfaces, we describe (1) the functionality

enabled by embedded applications and interfaces, and (2) the security concerns associated

with this embedding. We argue that interface embedding often increases the usability of a

particular interaction — embedded content is shown in context, and users can interact with
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multiple principals in one view — but that security concerns associated with cross-principal

UI embedding lead to designs that are more disruptive to the user experience (e.g., prompts).

4.2.1 Functionality

Third-party applications. web and smartphone applications often embed or redirect to

user interfaces from other sources. Common use cases include third-party advertisements

and social sharing widgets (e.g., Facebook’s “Like” button or comment feed, Google’s “+1”

button, or a Twitter feed). Other examples of embeddable content include search boxes

and maps.

On the web, content embedding is done using HTML tags like iframe or object. On

smartphone operating systems like iOS and Android, however, applications cannot directly

embed UI from other applications but rather do one of two things: (1) launch another

application’s full-screen view (via an Android Intent or an iOS RemoteViewController [18])

or (2) include a library that provides embeddable UI elements in the application’s own

process. The former is generally used for sharing actions (e.g., sending an email) and the

latter is generally used for embedded advertisements and billing.

System UI. Security-sensitive actions often elicit system interfaces, usually in the form of

prompts. For example, Windows users are shown a User Account Control dialog [112] when

an application requires elevation to administrative privileges, and iOS and browser users

must respond to a permission dialog when an application attempts to access a sensitive

resource (e.g., geolocation).

Because prompts result in a disruptive user experience, the research community has

explored using embedded system interfaces to improve the usability of security-sensitive

interactions like resource access. In particular, Chapter 3 of this dissertation described

access control gadgets (ACGs), embeddable UI elements that — with user interaction —

grant applications access to various system resources, including the camera, the clipboard,

the GPS, etc. For example, an application might embed a location ACG, which is provided

by the system and displays a recognizable location icon; when the user clicks the ACG,

the embedding application receives the current GPS coordinates. As we describe below,



94

ACGs cannot be introduced into most of today’s systems without significant changes to

those systems.

4.2.2 Threat Model and Security Concerns

We consider user interfaces composed of elements from different, potentially mutually dis-

trusting principals (e.g., a host application and an embedded advertisement or an embedded

ACG). Host principals may attempt to manipulate interface elements embedded from an-

other principal, and embedded principals may attempt to manipulate those of their host.

We assume that the system itself is trustworthy and uncompromised.

We observe that while web and smartphone applications rely heavily on third-party

content and services, the associated third-party user interface is not always actually em-

bedded inside of the client application. For example, websites redirect users to PayPal’s

full-screen page, OAuth authorization dialogs appear in pop-up or redirect windows, and

wwebeb users who click on a Facebook “Like” button that is suspected of being part of a

clickjacking attack will see an additional pop-up confirmation dialog. We observe two main

security-related reasons for the choice not to embed or not to be embedded.

One reason is concern about phishing. If users become accustomed to seeing embedded

third-party login or payment forms, they may become desensitized to their existence. Fur-

ther, because users cannot easily determine the origin (or presence) of embedded content,

malicious applications may try to trick users into entering sensitive information into spoofed

embedded forms (a form of phishing). Thus, legitimate security-sensitive forms are often

shown in their own tab or window.

Our goal in this chapter is not to address such phishing attacks, but rather to evaluate

and implement methods for securely embedding one legitimate (i.e., not spoofed) application

within another. (While extensions of existing approaches, such as SiteKeys, may help

mitigate embedded phishing attacks, these approaches do have limitations [144] and are

orthogonal to the goals of this chapter.1)

More importantly — and the subject of this chapter — even legitimate embedded inter-

1We also note that phished or spoofed interfaces are little threat if they do not accept private user input —
for example, clicking on a fake ACG will not grant any permissions to the embedding application.
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faces may be subject to a wide range of attacks, or may present a threat to the application

or page that embeds them. In particular, embedded UIs or their parents may be subject to:

• Display forgery attacks, in which the parent application modifies the child element

(e.g., to display a false payment value), or vice versa.

• Size manipulation attacks, in which the parent application violates the child ele-

ment’s size requirements or expectations (e.g., to secretly take photos by hiding the

camera preview [161]), or the child element sets it own size inappropriately (e.g., to

display a full-screen ad).

• Input forgery attacks, in which the parent application delivers forged user input

to a child element (e.g., to programmatically click on an advertisement to increase ad

revenue), or vice versa.

• Clickjacking attacks, in which the parent application forces or tricks the user into

clicking on an embedded element [70] using visual tricks (partially obscuring the child

element or making it transparent) or via timing-based attacks (popping up the child

element just as the user is about to click in a predictable place).

• Focus stealing attacks, in which the parent application steals the input focus from

an embedded element, capturing input intended for it, or vice versa.

• Ancestor redirection attacks, in which a child element redirects an ancestor (e.g.,

the top-level) application or page to a target of its choice, without user consent.

• Denial-of-service attacks, in which the parent application prevents user input from

reaching a child element (e.g., to prevent a user from clicking “Cancel” on an autho-

rization dialog), or vice versa.

• Data privacy attacks, in which the parent or child extract content displayed in the

other.

• Eavesdropping attacks, in which the parent application eavesdrops on user input

intended for a child element (e.g., a sensitive search query), or vice versa.
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4.2.3 Security Goals

Motivated by the above challenge, this chapter proposes, implements, and evaluates the

following desired security properties for embedded cross-principal user interfaces:

1. Display Integrity. One principal cannot alter the content or appearance of another’s

interface element, either by direct pixel manipulation or by element size manipulation.

This property prevents display forgery and size manipulation attacks.

2. Input Integrity. One principal cannot programmatically interact with another’s inter-

face element. This property prevents input forgery attacks.

3. Intent Integrity. First, an interface element can implement (or request that the system

enforce) protection against clickjacking attacks. Second, one principal cannot prevent

intended user interactions with another’s interface element (denial-of-service). Finally,

based on our implementation experience (Section 4.6), we add two additional require-

ments: an embedded interface element cannot redirect an ancestor’s view without

user consent, and no interface element can steal focus from another interface element

belonging to a different principal.

4. Data Isolation. One principal cannot extract content displayed in, nor eavesdrop on

user input intended for, another’s interface element. This property prevents data

privacy and eavesdropping attacks.

5. UI-to-API Links. APIs can verify that they were called by a particular principal or

interface element.

These properties assume that principals can be reliably distinguished and isolated, either

by process separation, run-time validation (e.g., of the same-origin policy), or compile-time

validation (e.g., using static analysis).

4.3 Analysis of UI Embedding Systems

To assess the spectrum of solutions and to inform our own design and implementation

choices, we now step back and analyze prior web and Android based solutions for cross-

application embedded interfaces with respect to the set of security properties described in

Section 4.2.3. This analysis is summarized in Table 4.1.
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Category Security Requirement Browsers Android AdDroid AdSplit
[131] [148]

Display Integrity Prevents direct modification 3 7 7 3

Prevents size manipulation 7 7 7 7

Input Integrity Prevents programmatic input 3 7 7 3

Intent Integrity Clickjacking protection 7 3 3 3

Prevents input denial-of-service 3 7 7 7

Prevents focus stealing 3 7 7 3

Prevents ancestor redirection 3 7 7 7

Data Isolation Prevents access to display 3 7 7 3

Prevents input eavesdropping 3 7 7 7

UI-to-API Links APIs can verify caller 3 7 7 3

Table 4.1: Analysis of Existing Systems. This table summarizes, to the best of our

knowledge, the UI-level security properties (developed in Section 4.2.3) achieved by existing

systems. Table 4.2 similarly analyzes our implementation.

4.3.1 Browsers

Browsers support third-party embedding by allowing web pages to include iframes from

different domains. Like all pages, iframes are isolated from their parent pages based on the

same-origin policy [169], and browsers do not allow pages from different origins to capture

or generate input for each other.

However, an iframe’s parent has full control of its size, layout, and style, including

the ability to make it transparent or overlay it with other content. These capabilities

enable clickjacking attacks. While there are various “framebusting” techniques that allow

a sensitive page to prevent itself from being framed in an attempt to prevent such attacks,

these techniques are not foolproof [143]. More importantly, framebusting is a technique to

prevent embedding, not one that supports secure embedding.

Additionally, while an iframe cannot read the URL(s) of its ancestor(s), it can change the

top-level URL, redirecting the page without user consent. Newer version of some browsers

allow parent pages to protect themselves by using the sandbox attribute for iframes; thus,

we’ve indicated that the web prevents such attacks in Table 4.1. However, we observe that

it may be desirable to allow user actions to override such a restriction, and we describe how
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to achieve such a policy in later sections.

Research browsers and browser operating systems (e.g., Gazelle [172] and IBOS [159])

provide similar embedded UI security properties as traditional browsers, and thus we omit

them from Table 4.1. Gazelle partially addresses clickjacking by allowing only opaque cross-

origin overlays, but this policy is not backwards compatible. Furthermore, malicious parent

pages can still obscure embedded content by partially overlaying additional content on top

of sensitive iframes. We discuss additional work considering clickjacking in Section 4.10.

4.3.2 Android

Unlike browsers, Android has no notion of isolated iframes; rather, application developers

wishing to embed third-party content must do so by including libraries that run in the

host application’s execution context. As a result, stock Android provides almost no security

properties for or from embedded user interfaces: parent and child interface elements running

in the same execution context can manipulate each other arbitrarily. We further detail the

implications of Android’s UI-level security weaknesses through case studies in Section 4.5.

Two recent research efforts [131, 148] propose privilege separation to address security

concerns with Android’s advertising model (under which third-party ad libraries run in the

context of the host application). AdDroid’s approach [131] introduces a system advertising

service that returns advertisements to the AdDroid userspace library, which displays them

in a new user interface element called an AdView. While this approach successfully removes

untrusted ad libraries from applications, it does not provide any additional UI-level security

properties for the embedded AdView beyond what is provided by stock Android (see Ta-

ble 4.1). For example, it does not prevent the host application from engaging in clickfraud

by programmatically clicking on ads.

AdSplit [148], on the other hand, fully separates advertisements into distinct Android

applications (one for each host application). AdSplit achieves the visual embedding of the

ad’s UI into the application’s UI by overlaying the host application, with a transparent

region for the ad, on top of the ad application. It prevents programmatic clickfraud attacks

by authenticating user input using Quire [35]. As summarized in Table 4.1, AdSplit meets
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the majority of security requirements for embedded UIs. Indeed, the requirements it meets

are sufficient for embedded advertisements. Because it does not meet all of the requirements,

however — most importantly, it does not prevent input eavesdropping — AdSplit would not

be well-suited as a generalized solution for embedded UIs.

4.4 Security-Aware User Interface Toolkit Architecture

In this section, we first consider securing cross-principal user interfaces from the perspective

of a user interface toolkit; in the remainder of this chapter, we then apply the techniques

developed here specifically to Android, refining them in the process.

User interface toolkits help to reduce barriers in the design and development of modern

graphical interfaces [121, 126]. In aiming to provide maximal flexibility and expressivity,

existing toolkit research generally makes an implicit assumption that developers have full

control of an interface (e.g., [36, 38, 40, 71, 121]). However, as applications move towards

interfaces composed of elements from different principals, this assumption can pose signifi-

cant security risks, as discussed in Section 4.2. We argue that a user interface toolkit should

thus consider security as a first-order goal.

We introduce a user interface toolkit architecture that achieves the security properties

described in Section 4.2.3 by (1) isolating interface elements by principal and (2) maintaining

specific invariants with respect to the interface layout tree. The toolkit does so while

retaining developer flexibility to (3) expose model-level APIs, (4) compose elements, and

(5) display feedback across principals. We describe each of these design points in turn.

4.4.1 Achieving Security Properties

Principals and Permissions

Our architecture separates mutually distrusting application components, both interface code

and application code, by principal. For example, system code belongs to one principal (re-

ferred to as “system-trusted” throughout this section), an application belongs to another

principal, and third-party elements belong to their own principals (e.g., an ad library, a Pay-

Pal payment button, or a Google login field). Figure 4.1 shows how parts of an application
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Figure 4.1: Principals and Permissions. An example of how an element’s principal and

permissions map to accessible APIs. An element with principal A and permissions B and

C is designated ElementName {A, [B, C]}.

might map to principals; we explain the details of this figure throughout this subsection.

We note that our architecture is agnostic to a system’s specific implementation of prin-

cipal separation. For example, browsers separate principals by dynamic enforcement of the

same-origin policy, LayerCake — our modified version of Android that we describe in Sec-

tion 4.6 — separates principals into distinct Android applications (isolated by running in

different processes), and our initial Android prototype (described in our 2012 paper [136])

separated Android UI elements based on Java package names and (hypothesized but not

implemented) static analysis.

Principal assignment. In order to isolate elements from different sources, our toolkit must

associate all code and all interface elements with a principal. We leave it up to applications,

libraries, and the system to associate their own non-interface code with principals at any

granularity, but we must consider the appropriate model for assigning interface elements to

principals. In particular, our toolkit architecture must support two types of scenarios. In

the first, an application embeds a sensitive element exposed by another principal, such as

a system-trusted camera button (i.e., a camera access control gadget). In the second, an

application simply uses a generic toolkit element (such as a standard button) which should

become part of the application’s own principal.
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To support these scenarios, we introduce two types of interface elements: fixed-trust-

group elements and owner-bound elements. A fixed-trust-group element has a set principal

that does not depend upon which entity instantiates or embeds it (e.g., a camera button

may belong to the system group). An owner-bound element, such as a standard button,

adopts the principal of the code that instantiates it.

Restricting application, system, and library APIs. Our architecture can use princi-

pals to create the desired link between interface code and application, system, or library code

(UI-to-API Links) by simply denying API access to callers from unauthorized principals.

However, principals may sometimes not be sufficiently granular for an API’s access

control policy. For instance, the system may wish to restrict the takePicture() API only

to the system-provided camera button, not to all system interface elements. This policy

embodies the standard security principle of least privilege, as arbitrary system components

do not need access to the camera. Thus, even if other system elements could be manipulated

into invoking the takePicture() API, those calls would fail.

To allow such fine-grained access control policies, we associate each interface element

with a set of permissions in addition to its principal. Taken together, these allow the

system or an application to restrict certain APIs (e.g., takePicture()) to code originating

from interface elements of an appropriate principal and with sufficient permissions (e.g., an

element with principal “system” and a permission list containing the “camera” permission).

In this section, we designate an interface element with principal A and permissions B and

C as Element{A, [B, C]}. Figure 4.1 shows an example of how elements map to principals

and permissions, which in turn map to accessible APIs in application, system, or library

code. In the common case (such as the AdWidget in Figure 4.1), an element’s permissions

list will be empty, giving it access to only those APIs that do not require any additional

permissions.

Restricting interface APIs. Interface elements may need to protect certain methods

and expose others. For example, an ad element would not wish to allow performClick()

to be called by another principal, but it may wish to expose a method to set advertisement

keywords. Similarly, an application should be able to attach a callback to a system camera
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element to receive a photo after it is taken.

Interface elements are thus responsible for defining an access policy for their methods.

By default, only code within the same principal and the system’s principal can access all of

an element’s methods. We note that an alternate default would allow all access, relying on

developers to selectively restrict sensitive methods. We opt for the stricter default, lowering

the threshold to implementing secure interfaces under the assumption that most interfaces

do not require crossing security boundaries.

Restrictions on relevant methods provide the following protections, which are subsets of

our security properties:

• Code cannot manipulate the display of elements belonging to other principals (Display

Integrity). For example, the methods setBackground() or setTransparency() can

be inaccessible to code from another principal.

• Code cannot extract data from elements belonging to other principals (Data Isolation).

For example, the method getText() can be inaccessible.

• Code cannot programmatically click on elements belonging to other principals (Input

Integrity).

• Code cannot enable or disable elements belonging to other principals (Intent Integrity).

Another aspect of Intent Integrity is the ability to prevent clickjacking attacks, in which a

malicious parent reveals a sensitive interface element from another principal just as the user

is about to click in a predictable location. An element can use system-provided information

about its current visibility to implement a clickjacking-protection policy, such as becoming

enabled only after being fully visible for some time — as in Chrome (Issue 52868 [26]) and

Firefox (Advisory 2008-08 [120]).

Interface Layout Tree Invariants

Using principals and permission lists, our architecture achieves a number of desired security

properties. However, applications are still susceptible to security weaknesses stemming from

the way in which traditional user interface toolkits organize interface elements into a layout

tree (where an element is the parent of any elements it embeds).
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• Insecure layout: Although principals and permissions restrict method calls on ele-

ments, code can still manipulate an element’s display using layout techniques (i.e.,

violate Display Integrity). For instance, an application wishing to hide a required in-

terface element could simply cover that portion of an interface — e.g., the shield icon,

required by the Windows User Account Control [138] to adorn any button which will

result in actions requiring administrator privileges. Similarly, an application wishing

to force a user into clicking on a system-trusted location button could simply make

this button much larger than surrounding buttons. In traditional user interface toolk-

its, parent nodes can control the size and layout of their children. As a result, an

application that embeds an element of another principal has complete control over

the drawing and layout of the embedded element.

• Insecure input: In a traditional layout tree, a malicious application can eavesdrop

on, block, or modify events as they trickle down the tree. For example, an appli-

cation could embed a third-party login element and then steal a user’s password by

eavesdropping on key events as they propagate down the tree (thus violating Data Iso-

lation). Other attacks could modify the picking code to redirect input to a different

interface element (e.g., modifying a legitimate click event to move its location onto a

secure button) or prevent an event’s propagation entirely. The fundamental challenge

is that a single layout tree contains nodes from different principals, thus introducing

the potential for untrusted nodes to access events before they reach their intended

recipient.

Layout tree invariants. To mitigate these weaknesses, our toolkit departs from traditional

toolkits to enforce the following invariants: (1) the root node of an application’s layout tree

must be a system node, and (2) only system nodes may have children of a different principal.

Because we can trust the system itself to provide elements with the layout attributes they

request (subject to any necessary conflict resolution), these invariants mitigate the insecure

layout weakness. We can also trust the system to provide accurate information about

an element’s position and visibility (enabling the clickjacking protection described above).

Furthermore, only nodes belonging to the same principal or the system’s principal will see
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Figure 4.2: Layout Tree Transformation. The intended layout tree for the application

shown in Figure 4.1 is transformed to include a proxy node, enforcing the invariant that

only system-trusted nodes may have children of a different principal.

input events propagating down the tree, thus eliminating the eavesdropping threat.

Conflicts in visual space. Although our invariants dictate that only system nodes may

have children from another principal, applications may wish to visually embed elements

from different principals. Consider the example in Figure 4.1, where an interface consists of

an application map element containing a system-trusted location button. The first invariant

is easy to satisfy by placing the entire application in a system-trusted frame. However, the

second invariant is more difficult to satisfy while achieving the desired visual effect, as it

prevents the map element from being the parent of the location button.

We solve this problem by introducing a system-trusted proxy node into the layout tree.

Figure 4.2 shows the resulting transformation of the tree. In particular, the proxy node

becomes a parent of both the map element and the location button, overlaying them as in-

tended by the application. This transformation preserves the trust hierarchy for layout and

for event propagation. We describe in later sections how this transformation can be imple-

mented automatically and transparently to applications, which can continue to manipulate

a view of the layout tree that matches the intended visual layout.

A final issue to resolve is layout requests that are conflicting or otherwise cannot be

satisfied. The parent element traditionally controls space available to a child element, but

this approach may violate security properties (e.g., an application may tell an element to
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paint itself so small that important context is hidden from a user). On the other hand, a

malicious child that controls its own size could draw outside the acceptable bounds (e.g., a

malicious ad library that takes over the entire screen).

In the case of a system-trusted child element (e.g., a location button), we rely on our as-

sumption that the system is trustworthy. Our architecture enforces the minimum requested

size for system-trusted elements, even if the size allocated by the parent is smaller than this

minimum. In the general case, we cannot make assumptions about whether the embedding

or the embedded node is more trustworthy. We resolve the conflict as follows: if the child

element requests a larger size than permitted by the parent element, we draw the child

element with the smaller size, visually indicate to the user that the child could not be fully

displayed, and allow the user to manually maximize it. This solution can be seen as a sort

of generalization of the behavior of typical browser popup-blockers.

Here, we have discussed a general design for maintaining our interface layout tree invari-

ants and for handling size conflicts; we refine these techniques based on our implementation

experiences in Section 4.6. For example, we find that the tree transformation approach can

be eliminated or simplified in practice.

4.4.2 Maintaining Developer Flexibility

In designing a security-aware user interface toolkit, we aim to support these security prop-

erties alongside the traditional goals of minimizing the difficulty of implementing typical

interfaces (i.e., minimizing a toolkit’s threshold [121]) while still providing maximal expres-

siveness and flexibility (i.e., maximizing a toolkit’s ceiling [121]).

Although isolating elements by principal and maintaining the described tree invariants

supports our desired security properties, naively implementing these mechanisms introduces

undesired restrictions on interface flexibility. To restore this necessary flexibility, we now

extend this basic architecture to allow developers to expose model-level APIs, compose

elements, and display feedback across principals.
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Model-Level Event Listeners

In traditional user interface toolkits, interface elements allow applications to attach listeners

for various events (e.g., click, key, touch). For sensitive elements, however, these generic

listeners may present security risks. For example, an application can use an onKeyListener

to eavesdrop as a user enters a password into a third-party federated login element. To

prevent such attacks, elements in our architecture default to restricting such listener hooks

to callers of the same principal (or the system itself).

However, recall that elements may wish to expose certain events across principals (e.g.,

to inform an application when an ad has loaded, to provide a captured photo, to update

detected GPS coordinates). Unlike generic event listeners, these events have model-level

semantics (i.e., they are meaningful at the application level, not at the interface element

level). We thus apply model-level event listeners, which can be used by a sensitive element to

expose higher-level data or events to the principal that embeds it. For example, a payment

library might now allow applications to attach arbitrary listeners to a payment dialog,

but could explicitly expose events for successful payment. Existing UI toolkits use model-

level events to provide meaningful notifications related to manipulation of an element (e.g.,

ItemListeners on menu items and ChangeListeners on sliders), but security-sensitive

interface elements are likely to expose even higher-level events than current examples.

In our architecture, both generic and model-level event listeners execute in the principal

of the defining code, not that of the element to which they are attached. Otherwise, an

attacker could inject arbitrary code into another principal’s code (e.g., by attaching an

onClickListener to an element belonging to the principal of the attacker’s choice).

Composition Across Principals

We have thus far considered only the visual composition of elements belonging to differ-

ent principals. However, interface designers require greater flexibility to logically compose

elements. For example, recall from Chapter 3 the discussion of composed access control gad-

gets: a developer may wish to design a button that takes location-tagged photos, combining

a location ACG with a camera ACG. Conceptually, the developer would like to embed icons
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Figure 4.3: Composition Across Principals. In this example, the application has

composed the system-trusted camera and location icons with its own label to create a

custom button that has both camera and location permissions.

from both ACGs into a custom element and inherit the former’s principals and permissions.

We support composition of elements from multiple principals by introducing a system-

defined ComposedElement. Any principal may choose to expose composable sub-elements

for inclusion in a ComposedElement (e.g., the system may expose a User Account Control

shield icon with the “administrator” permission or a GPS icon with the “location” per-

mission). Another developer can then mash up these sub-elements with custom elements

in a ComposedElement. For instance, Figure 4.3 shows a composed button for taking a

location-tagged photo.

Our toolkit must ensure that allowing compositions does not violate the security prop-

erties achieved in previous sections. In particular, a ComposedElement must not allow code

to manipulate or observe elements belonging to another principal or to inappropriately ac-

cess restricted APIs. In order to retain the benefits of the layout tree invariants previously

described, we assign ComposedElements to the “system” principal. ComposedElements are

thereby allowed to contain sub-elements of other principals. Our invariants continue to hold

within the ComposedElement. This ensures, for example, that an application cannot use a

composition to eavesdrop on a third-party login field.

Recall the goal of a composition is for the resulting element to inherit the permis-

sions of its constituent elements. However, we do not wish to allow applications to inject

arbitrary code into a ComposedElement, as this code will run in the system’s principal.
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To achieve these goals simultaneously, the ComposedElement allows the principal that

embeds it to attach event listeners. Unlike other event listeners (which run in the at-

tacher’s principal), listeners of a ComposedElement run in a temporary principal derived

from the ComposedElement’s sub-elements; its set of permissions is the union of their per-

missions. For example, the ComposedElement in Figure 4.3 includes location and camera

sub-elements, resulting in an onComposedClickListener with principal and permissions

defined as {System-Application-Composed, [Location, Camera]}. The attached listener can

thus access the necessary system APIs (but not other system APIs).

Without an additional timeout mechanism, such ComposedElement listeners cannot be

prevented from running and taking advantage of these permissions indefinitely. Thus, if a

principal wishes to prevent this risk for certain permissions, it should not expose them via

composable sub-elements. For example, if the system wishes to grant camera access only

via photos returned directly from a system-trusted camera button (i.e., a camera access

control gadget), it should not (and does not need to) expose a composable camera icon.

Flexibility of Feedback

Isolating interface elements from different principals as described thus far will restrict de-

veloper flexibility in displaying feedback that requires access to elements and data across

principals. We examine drag-and-drop and lenses as canonical examples of such flexible

feedback, and we describe how our toolkit architecture preserves developer flexibility for

these types of scenarios.

During a drag-and-drop operation, dragging an object over a potential drop target often

yields feedback indicating whether it can accept the drop and possibly what effect the drop

will have. This feedback may require access to the contents of the drag object (not just its

type). For example, a text editor may wish to show what dropped text will look like in the

current font before the user completes the drop.

However, the drop target may belong to a different principal than the drag object. Until

a user drops the object, it is not clear that the potential drop target is the intended recipient,

so it should not receive full access to the drag object. Providing such access would allow a



109

malicious non-target application to steal potentially sensitive information. A challenge for

our toolkit architecture is therefore to allow the potential drop target to display feedback

that relies upon the content of the drag object.

Similarly, lenses [19] are overlaid on an interface to display flexible feedback about the

underlying elements. For example, a lens over a set of map tiles might magnify the un-

derlying map features or highlight certain cities. However, the elements from which a lens

requires information in order to paint itself may not all belong to the lens’s principal.

System-trusted lenses can have full access, but supporting arbitrary lenses requires allowing

the lens element to show feedback based on elements belonging to other principals. As with

drag and drop, we wish to support feedback in the lens without granting the lens’s principal

full access to the underlying interface elements.

Supporting flexible feedback. When an element wishes to display this type of cross-

principal feedback, the system launches a new sandbox that can run and isolate arbitrary

code, preventing it from communicating over the network or with other applications (note

that our toolkit design is independent of the implementation of this sandbox). Isolated in

this way, the system executes feedback generation code provided by the element in question.

This code generates feedback by accessing and manipulating a copy of the layout tree and

any other restricted data needed to generate appropriate feedback (e.g., the drag object).

However, the feedback code cannot break Data Isolation because it cannot communicate

outside of the sandbox. It also cannot violate Display Integrity, as it manipulates only a

copy of the restricted data.

The feedback code produces a temporary version of the relevant portion of the layout

tree. The system displays this feedback in a system-trusted overlay element, thus never

granting the original element access to the sensitive data. Note that it is possible for

malicious feedback code to show inaccurate feedback (e.g., a lens that displays cities not

on the underlying map). Thus, while users may interact with the feedback element (e.g.,

clicking on the map inside the lens), this feedback is not automatically propagated to the

underlying elements. If desired, these elements can expose methods allowing for feedback

event propagation.
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Android prototype implementation. Our original paper on a security-aware UI toolkit

architecture [136] contained a prototype Android implementation that differs from Layer-

Cake, which we describe in this chapter (Section 4.6). We mention the original prototype

here, because (unlike LayerCake) it included an implementation of flexible feedback for

drag-and-drop, as described above. We refer to our 2012 paper for the details of that

implementation [136].

4.5 The Case for Secure UIs in Android

While Section 4.4 developed techniques for a user interface toolkit architecture in general,

we now specifically make the case for secure embedded UIs in Android. The fact that an

Android application cannot embed another application’s interface results in a fundamental

trust assumption built into the Android UI toolkit. In particular, every UI element trusts

its parent and its children, who each have unrestricted access to the element’s APIs. Vul-

nerabilities arise when this trust assumption is violated, e.g., because an embedded element

is provided by a third-party library.

We now introduce several case studies illustrating that embedded user interface scenarios

in stock Android are often either insecure or impossible. We will return to these case studies

in Section 4.7 and reevaluate them in the context of our implementation.

Advertising. In stock Android, applications wishing to embed third-party advertisements

must include an ad library, such as AdMob or Mobclix, which runs in the embedding ap-

plication’s process. These libraries provide a custom UI element (an AdView) that the

embedding application instantiates and embeds. As has been discussed extensively in prior

work [131, 148], the library model for third-party advertisements comes with a number of

security and privacy concerns. For example, the host application must trust the advertising

library not to abuse the host’s permissions or otherwise exploit a buggy host application.

Additionally, ad libraries ask their host applications to request permissions (such as loca-

tion and Internet access) on their behalf; applications that request permissions not clearly

relevant to their stated purpose can desensitize users to permission warnings [50].

We have also identified and experimentally demonstrated threats to the AdView [136].
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Parent applications can mount a programmatic clickfraud attack in which they program-

matically click on embedded ads to increase their advertising revenue. Similarly, parent

applications can mount clickjacking attacks by, for example, covering the AdView with

another UI element that does not accept (and thus lets pass through) input events.

WebViews. One of the built-in UI elements provided by Android is the WebView, which

can load local HTML content or an arbitrary URL from the Internet. Though WebViews

appear conceptually similar to iframes, they do not provide many of the same security prop-

erties. In particular, WebViews — and more importantly, the contained webpage — can be

completely manipulated by the containing application, which can mount attacks including

programmatic clicking, clickjacking, and input eavesdropping [98]. Thus, for example, if

an Android application embeds a WebView that loads a login page, that application can

eavesdrop on the user’s password as he or she enters it into the WebView.

Facebook social plugins. On the Web, Facebook provides a set of social plugins [46] to

third-party web developers. These plugins include the “Like” button, a comments widget,

and a feed of friends’ activities on the embedding page (e.g., which articles they liked or

shared). These social plugins are generally implemented as iframes and thus isolated from

the embedding page.

While Facebook also supplies an SDK for smartphones (iOS and Android), this library —

like all libraries, it runs in the host application’s process — does not provide embeddable

plugins like those found on the Web. A possible reason for this omission is that Facebook’s

SDK for Android cannot prevent, for example, applications from programmatically clicking

on an embedded “Like” button or extracting private information from a recommendations

plugin. Although developers can manually implement a social plugin using a WebView,

this implementation suffers from the security concerns described above. Thus, though em-

beddable social plugins on mobile may be desirable to Facebook, they cannot be achieved

securely on stock Android.

Access control gadgets. Finally, Chapter 3 proposed access control gadgets (ACGs),

secure embedded UI elements that are used to capture a user’s permission-granting intent
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Category Security Requirement (Section Number) Approach

Display Integr. Prevents direct modification (4.6.3) Embedded elements in isolated, overlaid windows.
Prevents size manipulation (4.6.6) User notifications on size conflicts.

Input Integr. Prevents programmatic input (4.6.3) Embedded elements in isolated, overlaid windows.

Intent Integr. Clickjacking protection (4.6.7) No input delivered if view/window not fully visible.
Prevents input DoS (4.6.3) Embedded windows attached to system root.

Data Isolation Prevents access to display (4.6.3) Embedded elements in isolated, overlaid windows.
Prevents input eavesdropping (4.6.3) Embedded windows attached to system root.
Prevents focus stealing (4.6.4) Focus changes only in response to real user clicks.
Prevents ancestor redirection (4.6.8) Prompts and (4.7.2) redirection ACG.

UI-API Links APIs can verify caller (4.6.2) Elements from different principals run in separate
calling processes (identifiable by package name).

Table 4.2: Techniques for Secure Embedded UI. This table summarizes how LayerCake

(our modified version of Android 4.2) achieves each of the desired security properties for

embedded user interface elements.

(e.g., to grant an application access to the user’s current location). Authentically capturing

a user’s intent relies on a set of UI-level security properties including clickjacking protection,

display isolation, and user intent protection. As we describe in this chapter, fundamental

modifications to Android are required to enable secure embedded elements like ACGs.

4.6 LayerCake: Secure Embedded UIs for Android

We now explore what it takes to support secure embedded UIs, under the definitions from

Section 5.2, in the Android framework. As no existing Android-based solutions meet these

goals, we view this implementation as an opportunity to consider secure embedding from

scratch. While we adapt techniques from prior work, we find that previously published

guidelines are not always directly applicable. For example, we found that we could simplify

an approach from Section 4.4.1 when overlaying cross-application content, but that we faced

additional practical challenges, such as the need to propagate layout changes and handle

multiple levels of nesting. We further discuss these and other challenges and lessons in

Section 4.9.

We thus created LayerCake, a modified version of the Android framework that supports
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cross-application embedding via changes to the ActivityManager, the WindowManager, and

input dispatching. We added or modified 2400 lines of source code across 50 files in Android

4.2 (Jelly Bean). Table 4.2 summarizes the implementation choices that achieve our desired

security properties.

We have made the LayerCake source code, system images, SDK, and sample applications

available at https://layercake.cs.washington.edu/.

4.6.1 Android Background

Android user interfaces are focused around Activities, which present the user with a par-

ticular view (or screen) of an application. An application generally consists of multiple

Activities (e.g., settings, comments, and newsfeed Activities), each of which defines an

interface consisting of built-in or custom UI elements (called Views).

Android’s ActivityManager keeps only one Activity in the foreground at a time. An

application cannot embed an Activity from another application, and two applications cannot

run side-by-side. While Android does provide support for ActivityGroups (deprecated in

favor of Fragments) to improve UI code reuse within an application, these mechanisms do

not provide true Activity embedding and are not applicable across application and process

boundaries. The goal of our exploration is to allow one application to embed an Activity

from another application (running in that other application’s process).

Each running Android application is associated with one or more windows, each of

which serves as the root of an interface layout tree consisting of application-specified Views.

Android’s WindowManager isolates these windows from each other — e.g., an application

cannot access the status bar’s window (shown at the top of the screen) — and appropriately

dispatches user input. Our implementation relies on these isolation properties.

While only one Activity can be in the foreground, multiple applications/processes may

have visible windows. For example, the status bar runs in the system process, and the win-

dow of one application may be visible below the (partially) transparent window of another.

As an example of the latter, AdSplit [148] achieves visual embedding by taking advantage

of an application’s ability to make portions of its UI transparent. However, recall from
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Figure 4.4: Sample Application. This

restaurant review application embeds two

third-party Activities, an advertisement and

a map. The map Activity further embeds

an access control gadget (ACG) for location

access.

Section 4.3 and Table 4.1 that this approach is insufficient for generalized embedded UI

security.

4.6.2 Supporting Embedded Activities

LayerCake introduces a new View into Android’s UI toolkit (Java package android.view)

called EmbeddedActivityView. It allows an application developer to embed another ap-

plication’s Activity within her application’s interface by specifying in the parameters of

the EmbeddedActivityView the package and class names of the desired embedded Activity.

Figure 4.4 shows a sample application that embeds several Activities.

We extended Android’s ActivityManager (Java) to support embedded Activities, which

are launched when an EmbeddedActivityView is created and displayed. Unlike ordinary

Activities, embedded Activities are not part of the ActivityManager’s task stack or history

list, but rather share the fate of their parent Activity. Crucially, this means that an embed-

ded Activity’s lifecycle is linked to that of its parent: when the parent is paused, resumed,

or destroyed, so are all of its embedded children.

An Activity may embed multiple other Activities, which themselves may embed one or

more Activities (multiple nesting). Each embedded Activity is started as a new instance,
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Figure 4.5: Window Management. This figure shows the Window/View tree for the

Activities in Figure 4.4. Embedded Activities are not embedded in the View tree (circles)

of their parent, but rather within a separate window. The WindowManager keeps track of

a window (grey squares) for each Activity and visually overlays an embedded window on

top of the corresponding EmbeddedActivityView in the parent Activity.

so multiple copies of the same Activity are independent (although they run in the same

application, allowing changes to the application’s global state to persist across different

Activity instances).

4.6.3 Managing Windows

Properly displaying embedded Activities required modifications to the Android Window-

Manager (Java). One option for achieving embedded UI layouts is to literally nest them —

that is, to add the embedded Activity’s Views (UI elements) as children in the parent

Activity’s UI tree. However, this design would allow the parent Activity to mount input

eavesdropping and denial-of-service attacks on the child Activity. Thus, following the inter-

face layout tree invariants described in Section 4.4.1 we do not literally nest the interface

elements of embedded Activities inside the parent Activity. Instead, an embedded Activity

is displayed in a new window, overlaid on top of the window to which it is attached (i.e.,
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Figure 4.6: Panning for Software Key-

board. The restaurant review application

(from Figure 5.5), including its overlaid em-

bedded windows, must be panned upward to

make room for the software keyboard under-

neath the in-focus text box.

the window of the parent Activity). This overlay achieves the same visual effect as literal

embedding but prevents input manipulation attacks. Figure 4.5 shows an example of the

interface layout trees associated with the Activities in the sample application in Figure 4.4.

We note that we were able to simplify the approach from Section 4.4.1, which we found in

our implementation experience to be overly general (see Section 4.9).

By placing embedded Activities into their own windows instead of into the parent’s

window, we also inherit the security properties provided by the isolation already enforced by

the WindowManager. In particular, this isolation prevents a parent Activity from modifying

or accessing the display of its child Activity (or vice versa).

The relative position and size of an overlaid window are specified by the embedding

application in the layout parameters of the EmbeddedActivityView and are honored by the

WindowManager. (Note that the specified size may violate size bounds requested by the

embedded Activity, as we discuss in Section 4.6.6.)

The layout parameters of an embedded Activity’s window must remain consistent with

those of the associated EmbeddedActivityView, a practical challenge not described in prior
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work. For example, when the user reorients the phone into landscape mode, the parent

Activity will adjust its UI. Similarly, when the soft keyboard is shown, Android may pan

the Activity’s UI upwards in order to avoid covering the in-focus text box with the keyboard

(Figure 4.6). In both cases, the embedded Activity’s windows must be relocated appropri-

ately. To support these dynamic layout changes, the EmbeddedActivityView reports its

layout changes to the WindowManager, which applies them to the associated window.

Finally, since LayerCake supports multiple levels of embedding, it must appropriately

display windows multiple levels down (e.g., grandchildren of the top-level Activity). For

example, suppose ActivityA embeds ActivityB which embeds ActivityC. If the Embed-

dedActivityView (inside ActivityB) that corresponds to ActivityC is not fully visible —

e.g., because it is scrolled halfway out of ActivityB’s visible area — then the window corre-

sponding to ActivityC must be cropped accordingly (Figure 4.7). This cropping is necessary

because ActivityC is not literally nested within ActivityB, but rather overlaid on top of it,

as discussed above.

4.6.4 Handling Focus

Both the parent and any embedded Activities must properly receive user input. While

touch events are dispatched correctly even in the presence of visually overlapping windows,

stock Android grants focus for key events only to the top-level window. As a result, only

the window with the highest Z-order in an application with embedded Activities will ever

receive key events. We thus modified Android to switch focus between windows belonging

to the parent or any embedded Activities within an application, regardless of Z-order.

In particular, we changed the input dispatcher (C++) to deliver touch events to the Win-

dowManager in advance of delivering them to the resolved target. When the user touches

an unfocused window belonging to or embedded by the active application, the Window-

Manager redirects focus. Windows that might receive the redirected focus include that of

the parent Activity, the window of any embedded Activity, or an attached window from

the same process (e.g., the settings context menu, which Android displays in a new win-

dow). Switching focus only in response to user input (rather than an application’s request)
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Figure 4.7: Cropping Further Nested

Activities. If a grandchild (ActivityC) of

the top-level Activity (ActivityA) is placed

or scrolled partly out of the visible area of

its immediate parent (ActivityB), it must be

cropped accordingly.

prevents a parent or child window from stealing focus to eavesdrop on input intended for

another principal.

4.6.5 Supporting Cross-Principal APIs

To support desired functionality, embedded UI elements and their parents must communi-

cate. For example, an application embedding an ad may wish to communicate keywords to

the ad provider, or a system-defined location button (ACG) may wish to pass the current

location to the parent application in response to a user click. To enable flexible communi-

cation between embedded Activities and their parents, we leverage the Android Interface

Definition Language (AIDL), which lets Android applications define interfaces for inter-

process communication. We thus define the following programming model, enabling the

model-level event listeners described in Section 4.4.2.

Each embeddable Activity defines two AIDL interfaces, one that it (the child) will imple-

ment, and one that the parent application must implement. For example, the advertisement

(child) may implement a setKeywords() method, and the ad’s parent application may be

asked to implement an onAdLoaded() method to be notified that an ad has been successfully

loaded. When an application wishes to embed a third-party Activity, it must keep copies

of the relevant interface files in its own source files (as is standard with AIDL), and it must

implement registerChildBinder(). This function allows the child Activity, once started,

to make a cross-process call registering itself with the parent.

We note that this connection is set up automatically only between parents and immediate

children, as doing so for siblings or farther removed ancestors may leak information about
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Figure 4.8: Size Conflict Notification. If the AdMobWrapper application specifies a

minimum size that the RestaurantReviewActivity does not honor when it embeds the ad-

vertisement, a system notification is displayed to the user. Clicking on the notification

displays a full-screen advertisement Activity.

the UIs embedded by another principal.

4.6.6 Handling Size Conflicts

Recall from Section 4.6.3 that the WindowManager honors the parent application’s size

specification for an EmbeddedActivityView. This policy prevents a child element from

taking over the display (a threat discussed further in the context of ancestor redirection

below). However, we also wish to prevent size manipulation by the parent.

We observe that it is only of concern if an embedded Activity is given a smaller size

than requested, since it need not scale its contents to fill its (possibly too large) containing

window. Thus, we modified the Activity descriptors to include only an optional minimum

height and width (specified in density-independent pixels).

Section 4.4.1 described different size conflict policies based on whether the embedded

element is trusted or untrusted by the system. If it is trusted (e.g., a system-defined ACG),

its own size request should be honored; if it is untrusted (e.g., an ad that requests a size

filling the entire screen), the parent’s size specification is honored. However, we observe

in our implementation experience that a malicious parent can mimic the effect of making

a child element too small using other techniques, such as scrolling it almost entirely off-

screen — and that doing so maliciously is indistinguishable from legitimate possible scroll

placements. We thus further consider the failure to meet minimum size requirements in the
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context of clickjacking (Section 4.6.7).

Thus, since enforcing a minimum size for trusted embedded elements does provide addi-

tional security properties in practice, we use the same policy no matter whether mis-sized

elements are trusted or untrusted by the system. That is, the WindowManager honors the

size specifications of the parent Activity. If these values are smaller than the embedded

Activity’s request, a status bar notification is shown to the user (Figure 4.8). Similar to

a browser’s popup blocker, the user can click this notification to open a full-screen (non-

embedded) version of the Activity whose minimum size was not met.

4.6.7 Support for Clickjacking Prevention

In a clickjacking attack [70], a malicious application forces or tricks a user into interacting

with an interface, generally by hiding important contextual information from the user.

For instance, a malicious application might make a sensitive UI element transparent or

very small, obscure it with another element that allows input to pass through it, or scroll

important context off-screen (e.g., the preview associated with a camera button).

To prevent such attacks, an interface may wish to discard user input if the target is

not fully visible. Since it may leak information about the embedding application to let an

element query its own visibility, LayerCake allows embedded Activities to request that the

Android framework simply not deliver user input events if the Activity is:

1. Covered (fully or partly) by another window. This request is already supported by stock

Android via setFilterTouchesWhenObscured().

2. Not the minimum requested size. A parent application may not honor a child’s size

request (see Section 4.6.6).

3. Not fully visible due to window placement. An embedded Activity’s current effective

window may be cropped due to scrolling.

Note that an embedded Activity need not be concerned about a malicious parent making

it transparent, because stock Android already does not deliver input to invisible windows.

Similarly, an Activity need not be concerned about malicious visibility changes to UI el-

ements within its own window, since process separation ensures that the parent cannot
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manipulate these elements. To prevent timing-based attacks, these criteria should be met

for some minimum duration [70] before input is delivered, a check that we leave to future

work.

We emphasize that embedded iframes on the Web today can neither discover if all of

these criteria are met — due to the same-origin policy, they cannot know if the parent page

has styled them to be invisible or covered them with other content — nor request that the

browser discard input under these conditions.

4.6.8 Preventing Ancestor Redirection

Android applications use Intents to launch Activities either in their own execution context

(e.g., to switch to a Settings Activity) or in another application (e.g., to launch a browser

pointed at a specified URL). In response to a startActivity(intent) system call, Android

launches a new top-level full-screen Activity. Recall that allowing an embedded element to

redirect the ancestor UI without user consent is a security concern.

We thus make two changes to the Android framework. First, we introduce an additional

flag for Intents that starts the resulting Activity inside the window of the embedded Activity

that started it. Thus, for example, if an embedded music player wishes to switch from its

MusicSelection Activity to its NowPlaying Activity without breaking out of its embedded

window, it can do so by specifying Intent.FLAG ACTIVITY EMBEDDED. (If the music player

is not embedded, this flag is simply ignored.)

Second, we introduce a prompt shown to users when an embedded Activity attempts

to launch another Activity full-screen (i.e., not using the flag described above). This may

happen either because it is a legacy application unaware of the flag, or for legitimate reasons

(e.g., a user’s click on an embedded advertisement opens a new browser window). However,

studies have shown that prompting users is disruptive and ineffective [118]; in Section 4.7.2

we discuss an access control gadget that allows embedded applications to launch full-screen

Intents in response to user clicks without requiring that the system prompt the user.
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4.7 Case Studies

We now return to the case studies introduced in Section 4.5 and describe how LayerCake

supports these and other scenarios. Table 4.3 shows that implementation complexity is low,

especially for parent applications.

4.7.1 Geolocation ACG

To support user-driven access for geolocation, we implemented a geolocation access control

gadget (ACG) in the spirit of Chapter 3.We added a LocationAcg Activity to Android’s

SystemUI (which runs in the system process and provides the status bar, the recent appli-

cations list, and more). This Activity, which other applications can embed, simply displays

a location button (see Figure 4.4).

Following a user click, the SystemUI application, not the parent application, accesses

Android’s location APIs. To then receive the current location, the parent application must

implement the locationAvailable() method defined in the parent AIDL interface provided

by the LocationAcg’s developers (us).

Security discussion. LayerCake provides the security properties required to enable ACGs.

In particular, the parent application of a LocationAcg cannot trick the user into clicking on

the gadget, manipulate the gadget’s look, or programmatically click on it.

We emphasize again that this ACG provides location information to the parent applica-

tion only when the user wishes to share that information; a well-behaving parent application

will not need location permissions. In a system like Android, where applications can request

location permissions in their manifest, it is an open question how to incentivize developers

to use the corresponding ACG instead of requesting that permission. Chapter 3 suggested

incentives including increased scrutiny at app store review time of applications requesting

sensitive permissions.

4.7.2 Redirection Intent ACG

In Section 4.6.8, we introduced a system prompt when an embedded Activity attempts

to start a full-screen Activity. However, prompts are known to be disruptive and often
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Lines of Java Parent Lines of Java

Geolocation ACG 111 14
Redirection Intent ACG 75 23
Secure WebView 133 13
Advertisement 562 37
FacebookWrapper 576 30

Table 4.3: Implementation Complexity. Lines of code for (1) the embedded Activity

and (2) the parent’s implementation of the AIDL interface. We omit legacy applications

because they required no modifications and expose no parent interfaces. Implementation

complexity is low, especially for embedders.

ignored, especially following a user action intended to cause the effect about which the

prompt warns [178]. For example, a user who clicks on an embedded ad in stock Android

today expects it to open the ad’s target in a new (non-embedded) browser window. Following

the philosophy of user-driven access control (Chapter 3) we thus allow embedded Activities

to start top-level Activities without a prompt if startActivity() is called in response to

a user’s click.

To verify that the user has actually issued the click, we take advantage of our system’s

support for ACGs and implement an ACG for top-level redirection. This RedirectAcg

Activity again belongs to Android’s SystemUI application. It consists primarily of an Im-

ageView that may be filled with an arbitrary Bitmap, allowing the embedder to completely

specify its look. An embedded Activity that embeds such an ACG (two levels of embedding)

thus uses the cross-process API provided by the RedirectAcg to (1) provide a Bitmap spec-

ifying the look, and (2) specify an Intent to be supplied to the startActivity() system

call when the user clicks on the RedirectAcg (i.e., the ImageView’s onClick() method is

fired).

Security discussion. The UI-level security properties provided by LayerCake ensure that

the RedirectAcg’s onClick() method is fired only in response to real user clicks. In other

words, the embedding application cannot circumvent the user intent requirement for launch-

ing a top-level Activity by programmatically clicking on the RedirectAcg or by tricking the

user into clicking on it.
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Unlike the LocationAcg, however, the embedding application is permitted to fully control

the look of the RedirectAcg. This design retains backwards compatibility with the stock

Android experience and relies on the assumption that a user’s click on anything within an

embedded Activity indicates the user’s intent to interact with that application. However,

alternate designs might choose to restrict the degree to which the redirecting application

can customize the RedirectAcg’s interface. For example, the system could place a visual

“full-screen” or “redirect” indicator on top of the application-provided Bitmap, or it could

simply support a stand-alone “full-screen” ACG that applications wishing to open a new

top-level view must display without customization.

Note that developers are incentivized to use the RedirectAcg because otherwise attempts

to launch top-level Activities will result in a disruptive prompt (Section 4.6.8).

4.7.3 Secure WebView

We implemented a SecureWebView that addresses security concerns surrounding Android

WebViews [97, 98]. The SecureWebView is an Activity in a new built-in application (Web-

ViewApp) that consists solely of an ordinary WebView (inside a FrameLayout) that fills the

Activity’s whole UI. Thus, when another Activity embeds a SecureWebView, the internal

WebView takes on the dimensions of the associated EmbeddedActivityView.

The SecureWebView Activity exposes a safe subset (see below) of the underlying We-

bView’s APIs to its embedding process. The current version of LayerCake exposes only

a subset of these APIs for demonstration purposes. A complete implementation will need

to properly (de)serialize all complex data structures (e.g., SslCertificate) across process

boundaries.

Security discussion. Separating out the Android WebView into another process — that of

the WebViewApp — provides important missing security properties. It is no longer possible

to eavesdrop on input to the embedded webpage, to extract content or programmatically

issue input, or to manipulate the size, location, or transparency of the WebView to mount

clickjacking attacks.

While the SecureWebView wraps the existing WebView APIs, it should avoid exposing
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certain sensitive APIs, such as those that mimic user input (e.g., scrolling via pageUp()) or

that directly extract content from the WebView (e.g., screenshot via capturePicture()).

Note, however, that APIs which redirect the SecureWebView to another URL are permitted,

as the parent application could simply open a new SecureWebView instead.

Ideally, Android would replace the WebView with the SecureWebView, but this change

would not be backwards compatible and may conflict with the goals of some developers

in using WebViews. Thus, we observe that using a SecureWebView also benefits the em-

bedding application: if it exposes an API to the webpage via an ordinary WebView (using

addJavascriptInterface()), a malicious page could use this to manipulate the host appli-

cation. Process separation protects the host application from such an attack, and since the

WebViewApp has only the INTERNET permission, the attack’s effect is limited. Additionally,

WebView cookies are not shared across processes; the SecureWebView allows applications

to reuse (but not access) existing cookies, possibly providing a smoother user experience.

4.7.4 Advertisements

Recall that stock Android applications embedding third-party advertisements include an

ad library that runs in the host application’s process and provides an AdView element.

Our modifications separate the AdView out into its own process (see the advertisement

in Figure 4.4). To do this, we create a wrapper application for the AdMob advertising

library [57]. The wrapper application exposes an embeddable Activity (called EmbeddedAd)

that instantiates an AdMob AdView with the specified parameters. This Activity exposes

all of AdMob’s own APIs across the process boundary, allowing the embedding application

to specify parameters for the ad.

Security discussion. Moving ads into their own process (one process per ad library) ad-

dresses a number of the concerns raised in Section 4.5. In particular, an ad library can

no longer abuse a parent application’s permissions or exploit a buggy parent application.

Furthermore, the permissions needed by an ad library, such as Internet and location per-

missions, must no longer be requested by the parent application (unless it needs these

permissions for other purposes).
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Note that all ads from a given ad library — even if embedded by different applications —

run in the same process, allowing that ad application to leverage input from different em-

bedders. For example, if one application provides the user’s age and another provides the

user’s gender, the ad application can better target ads in all parent applications, without

revealing additional information to applications that did not already have it. (However, we

note that some users may prefer that ad applications not aggregate this information.)

LayerCake goes beyond process separation, providing UI-level security absent in most

prior systems (except AdSplit [148]). Most importantly, the parent can no longer mount

programmatic click fraud attacks.

4.7.5 Facebook Social Plugins

We can now support embedded Facebook social widgets in a secure manner. We achieve this

by creating a Facebook wrapper application that exposes Activities for various Facebook

social widgets (e.g., a Comments Activity and a Like Activity — see Figure 4.9). Each

Activity displays a WebView populated with locally-generated HTML that references the

Facebook JavaScript SDK to generate the appropriate plugin (as done ordinarily by web

pages and as specified by Facebook [46]).

Security discussion. LayerCake supports functionality that is impossible to achieve se-

curely in stock Android and may be desirable to Facebook. This functionality was previously

available only on the Web, due to the relative security of embedded iframes (though click-

jacking, or “likejacking”, remains a problem on the Web). Our implementation protects the

social widgets both by separating them into a different process (preventing data extraction,

among others), and by enforcing other UI-level security properties (preventing clickjacking

and programmatic clicking).

We observe that a malicious application might attempt to mimic the FacebookWrapper

application by populating a local WebView with the HTML for a social plugin. To prevent

this attack, we recommend that the FacebookWrapper application include a secret token

in the HTML it generates (and that Facebook’s backend verify it), similar in approach to

CSRF protections on the Web.
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Figure 4.9: Facebook Social Plugins.

This example blog application embeds both

a Facebook “Like” button and a comments

feed, both running in our FacebookWrapper

application.

4.7.6 Legacy Applications

The applications discussed so far needed wrapper applications because the wrapped func-

tionality was not previously available in a stand-alone fashion. However, this need is not

fundamental — any legacy Android application (i.e., one that targets older versions of the

Android SDK) can be embedded using the same techniques.

To demonstrate this, we created an application that embeds both the existing Pandora

application and the existing Amazon application. To do so, we needed to discover the

names of the corresponding Activities in the existing applications. This information is easy

to discover from Android’s standard log, which prints information about Intent targets when

they are launched. Figure 4.10 shows a screenshot of the resulting application.

Security discussion. As in previous case studies, the embedded Activities are isolated

from the parent. Thus, they cannot access sensitive information in or manipulate the UI or

APIs in the parent application, or vice versa.

Legacy applications naturally do not use the new FLAG ACTIVITY EMBEDDED flag when

launching internal Activities. While updated versions of Pandora and Amazon could use

this flag to redirect within an embedded window, the experience with unmodified legacy

applications is likely to be disruptive. Thus, a possible policy (perhaps subject to a user
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Figure 4.10: Embedded Pandora and

Amazon Apps. Legacy applications can

also be embedded, raising policy questions

regarding top-level intents and embedding

permissions.

preference setting) for such applications is to internally modify all Activity launches to use

the new flag, never allowing these applications to break out of their embedded windows.

Embedding arbitrary applications that were not intended by their developers to be

embedded also raises the question of embedding permissions. Some Activities may wish

never to be embedded, or to be embedded only by authorized parents. Future modifications

to LayerCake should support such permissions.

4.8 Performance Evaluation

We evaluate the performance impact of our changes to Android by measuring the time

it takes to start an application, i.e., the delay between a startActivity() system call

and the onCreate() call for the last embedded Activity (or the parent Activity, if none

are embedded). As shown in the top of Table 4.4, applications with embedded Activities

take longer to fully start. The reason for this is that the parent Activity’s layout must be

created (in its onCreate()) before child Activities can be identified. Thus, an application

with multiple nested Activities (e.g., RestaurantReviewer) requires linearly more time than

an application with only one level of nesting (e.g., FacebookDemo or Listen&Shop). We

note that the parent Activity’s own load time is unaffected by the presence of embedded

content (e.g., the FacebookDemo Activity starts in 160 ms, even though the embedded
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Load time (10 trial average)
Application No Embedding With Embedding

RestaurantReviewer 163.1 ms 532.6 ms
FacebookDemo 157.5 ms 304.9 ms
Listen&Shop 159.6 ms 303.3 ms

Scenario Event Dispatch Time (10 trial average)

Stock Android 1.9 ms
No focus change 2.1 ms
Focus change 3.6 ms

Table 4.4: Performance. The top table shows the time it takes for the onCreate()

method of all included Activities to be called. We note that the time to load the parent

Activity remains the same whether or not it uses embedding, so the time for the parent to

begin displaying native content is unaffected. The bottom table shows that the effect of

intercepting input events in the WindowManager for possible focus changes is minor.

Facebook components require 300 ms). Prior work [117] has argued that the time to display

first content is more important than full load time.

We also measure input event dispatch time (e.g., the time it takes for Android to de-

liver a touch event to an application). Specifically, we evaluate the impact of dispatching

input events first to the WindowManager, allowing it to redirect focus if appropriate (Sec-

tion 4.6.4). The bottom of Figure 4.4 shows that involving the WindowManager in dispatch

has a negligible performance impact over stock Android; changing focus has a greater im-

pact, but it is not noticeable by the user, and focus change events are likely rare.

We can also report anecdotally that the effect of embedding on the performance of our

case study applications was unnoticeable, except that the panning of embedded windows

(for the software keyboard) appears to lag slightly. This case could likely be optimized by

batching cross-process relayout messages.

Finally, supporting embedded Activities may result in more applications running on a

device at once, potentially impacting memory usage and battery life. The practical impact

of this issue depends on the embedding behavior of real applications — for example, perhaps

most applications will include ads from a small set of ad libraries, limiting the number of
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applications run in practice.

4.9 Discussion

Whereas existing systems — particularly browsers — have evolved security measures for em-

bedded user interfaces over time, this chapter has taken a principled approach to defining

a set of necessary security properties and building a system with full-fledged support for

embedding interfaces based on these properties.

4.9.1 Lessons for Embedded Interfaces

From this process, we provide a set of techniques for systems that wish to support secure

cross-application UI embedding. Table 4.2 outlines the security properties provided by

LayerCake and summarizes the implementation techniques used to achieve each property.

We hope this work, in which we develop security properties and techniques for embedded

user interfaces, and bring them together into a practical implementation, will inform the

designs and implementations of future systems. We highlight the following lessons:

User-driven ancestor redirection. Embedded applications should not be able to redi-

rect an ancestor application/page without user consent. We argue that a reasonable tradeoff

between security and usability is to prompt users only if the redirection attempt does not

follow a user click (indicating the user’s intent to interact with the embedded content).

While newer browsers prevent embedded iframes from redirecting the top-level page pro-

grammatically, they do not allow user actions (e.g., clicking on a link with target top) or

other mechanisms to override this restriction. In our case studies, we saw that this type

of click-enabled redirection can be useful and expected (e.g., when a user clicks on an em-

bedded ad, he or she likely expects to see full-screen content about the advertised product

or service). In LayerCake, we were able to apply ACGs in a novel way to capture a user’s

redirection intent (Section 4.7.2).

Size manipulation as a subset of clickjacking. We initially considered size manip-

ulation (by the parent of an embedded interface element) to be a stand-alone threat. A

solution that we considered is to treat elements that are trusted or untrusted by the system
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differently (e.g., an access control gadget is trusted while an advertisement is not), letting

the system enforce the minimum requested size for trusted elements. However, this solution

provides no additional security, since a malicious parent can use other techniques to obscure

the sensitive element (e.g., partially covering it or scrolling it partly off-screen). Thus, we

consider size manipulation as a subset of clickjacking. We suggest that sufficient size be

considered an additional criterion (in addition to traditional clickjacking prevention criteria

like complete visibility [70, 138]) for the enabling of a sensitive UI element.

Simplification of secure UI layout tree. Section 4.4 proposed invariants for the interface

layout tree that ensure a trusted path to every node and describes how to transform an

invalid layout tree into a valid one. Our implementation experience shows this solution to

be overly general. Embedded elements need not be attached to the layout tree in arbitrary

locations; rather, they can always attach to the (system-controlled) root node and overlaid

appropriately by the WindowManager (or equivalent). That is, the layout trees of separate

principals need never be interleaved, but rather visually overlaid on top of each other,

requiring no complex tree manipulations. Simplifying this approach is likely to make it

easier and less error-prone for system developers to support secure embedded UI.

4.9.2 New Capabilities

We step back and consider the capabilities enabled by our implementation. In particular,

the following scenarios were fundamentally impossible to support before our modifications

to Android; LayerCake provides additional security properties and capabilities even beyond

the Web, as we detail here.

Isolated Embedded UI. Most fundamentally, LayerCake allows Android applications to

securely embed UI running in another process. Conceptually, this aligns the Android appli-

cation model with the Web model, in which embedded cross-principal content is common.

Especially as Android expands to larger devices like tablets, users and application develop-

ers will benefit from the ability to securely view and show content from multiple sources in

one view.
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Secure WebViews. It is particularly important that WebViews containing sensitive con-

tent run in their own process. While an Android WebView seems at first glance to be similar

to an iframe, it does not provide the security properties to which developers are accustomed

on the Web (as discussed in this chapter and identified in prior work [97, 98]). LayerCake

matches and indeed exceeds the security of iframes — in particular, a SecureWebView can

request that the system not deliver user input to it when it is not fully visible or sufficiently

large, thereby preventing clickjacking attacks that persist on the Web.

Access Control Gadgets. Chapter 3 introduced ACGs [138] for user-driven access control

of sensitive resources like the camera or location, but that work does not provide concrete

guidelines for how the necessary UI-level security properties should be implemented. This

chapter provides these details, and we hope that they will guide system developers to include

ACGs in their systems. We particularly recommend that browser vendors consider ACGs in

their discussions of how to allow users to grant websites access to sensitive resources [170].

4.9.3 Additional Issues

Finally, we discuss unaddressed issues that must be considered in future work.

First is the issue of application dependencies, that is, how to handle the case when an

application embeds an Activity from another application that is not installed. Possibilities

include automatically bundling and installing dependencies (as also proposed by the authors

of AdSplit [148]), giving the user the option of installing the missing application, or simply

failing silently. This issue led the authors of AdDroid [131] to decide against running ads in

their own process, but we argue that the security concerns of not doing so outweigh this issue.

The concern that users might uninstall or replace ad applications to avoid seeing ads could

be addressed by giving parent applications feedback when a requested embedded Activity

cannot be displayed; applications relying on ads could then display an error message if the

required ad library is not available. Updates and differences in library versions required by

apps could be handled by Android by supporting multiple installed versions or simply by

the ad libraries themselves.

Second is the issue of principal identification: a user cannot easily determine the source
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of an embedded interface (or even whether anything is embedded). This concern mirrors

the Web today, where an iframe’s presence or source cannot be easily determined, and we

consider this to be an important orthogonal problem.

4.10 Related Work

Finally, we consider additional related work on not discussed inline.

User interface toolkit research generally focuses on reducing the effort needed to develop

new interfaces. Because the assumptions embedded in a framework can limit interface

designers and hinder the development or adoption of new techniques, research often focuses

on achieving maximal expressivity and flexibility for interface developers [36, 38, 40, 71, 121].

For example, prior work has proposed tools to aid in the creation of mashup interfaces on

the Web [66, 93, 175]. However, these toolkits are not aimed at addressing security concerns

and their implicit trust assumptions can pose challenges to security.

Work by Arthur and Olsen [11] examined protecting user data by separating interface

elements based on trust. They provide a methodology that splits an interface across a

trusted private device and an untrusted public device (e.g., a connected screen or keyboard)

by surfacing a user’s trust choices to applications. However, they do not consider embedded

user interfaces.

In Section 4.3 and Table 4.1, we explored existing implementations of embedded cross-

application user interfaces [44, 131, 136, 148]. These systems have differing goals and employ

a variety of techniques, but none fully meets the security requirements defined in [136]

and expanded here. In particular, none of these approaches can, without modification,

support security-sensitive embedded user interfaces like ACGs [138]. The original ACG

implementation built on interface-level security properties provided by the Gazelle browser

operating system [172].

Others have explored the problem of clickjacking in more depth. One study [143] found

that most framebusting techniques are circumventable, making them ineffective for prevent-

ing clickjacking. Other work [70] provides a comprehensive study of clickjacking attacks and

defenses, presenting a solution (InContext) that relies on the browser to verify the visual

context of sensitive UI elements. LayerCake could be extended to support InContext for
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additional clickjacking protection.

Our implementation relies on security properties provided by the Android WindowMan-

ager. Window system security has been explored previously by such projects as Trusted

X [43] (an implementation of the X Window System [54] based on the Compartmented

Mode Workstation requirements [176]), a secure version of X based on SELinux [81], and

the EROS Trusted Window System [147]. We extend this work by leveraging a secure

window system to support secure cross-application UI embedding within a single window.

Other researchers have focused on designing and evaluating interfaces for security-critical

interactions, including phishing protection [41], user account control [118], web SSL certifi-

cate warnings [158], and social network privacy policies [95]. Our work focuses on securing

interface-level threats, and we believe that advances here can be leveraged to help enable

research in how to best design security-related interfaces.

4.11 Summary

This chapter has systematically considered the security concerns and requirements for em-

bedded third-party user interfaces, developing a general secure-aware user interface toolkit

architecture and then implementing and refining those techniques in a modified version of

Android. In doing so, we analyzed existing systems — including browsers, smartphones,

and research systems — with respect to these requirements. While browsers have evolved

to address many (though not all) of these requirements over time, Android-based imple-

mentations have not supported secure embedded interfaces. We thus created LayerCake,

a modified version of the Android framework that supports cross-principal embedded in-

terfaces in a way that meets our security goals. The resulting capabilities enable several

important scenarios, including advertisement libraries, Facebook social plugins, and access

control gadgets, the latter introduced in Chapter 3. Based on our exploration and imple-

mentation experience, we provide a concrete set of criteria and techniques that has to date

been missing for system developers wishing to support secure interface embedding. This

work thereby lays a foundation for tackling the challenge of embedded third-party principals

within applications on modern client platforms.
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Chapter 5

WORLD-DRIVEN ACCESS CONTROL: PERMISSION GRANTING
FOR CONTINUOUS SENSING PLATFORMS

In this chapter, we revisit the second key challenge identified in Chapter 1, application

permission granting, in a new context. In Chapter 3, we described user-driven access control

as an effective permission granting model for modern operating systems like smartphones.

User-driven access control’s power comes from the fact that users implicitly indicate the

intent to grant permissions in the way that they naturally interact with applications — recall

from Chapter 3 that 95% of resource accesses in the studied set of Android applications are

coupled with a user’s UI interactions. Unfortunately, user-driven access control does not

translate well to emerging continuous sensing platforms such as the Microsoft Kinect, Google

Glass, or Meta SpaceGlasses, where applications rely on continuous access to sensitive sensor

input without frequent user interactions. This chapter introduces world-driven access control

as a novel permission granting approach for these continuous sensing settings, and lays the

groundwork for future research in this space. This work was first described in a 2014 tech

report [140].

5.1 Motivation and Overview

Continuous sensing is an emerging technology that enables new classes of applications. New

platforms, such as Microsoft Kinect [150], Google Glass [59], and Meta SpaceGlasses [109],

fundamentally rely on continuous video and depth cameras to support natural user in-

put via gestures and continuous audio sensing for voice commands. Applications on these

platforms leverage these capabilities to deliver new functionality to users. For example,

WordLens [134] is a Google Glass and iPhone application that uses the camera to contin-

uously scan for words in the real world. It then shows translations of these words overlaid

on the user’s vision.

These new capabilities raise serious privacy concerns. Consider a user who enters a
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Figure 5.1: Sensor Privacy Concerns. Camera restrictions are common in sensitive

locations like locker rooms, where both device users’ and bystanders’ privacy are at risk from

untrusted applications. Continuous sensing platforms like Google Glass will make it harder

for honest users to mitigate such risks by managing applications’ permissions. World-driven

access control allows real-world objects to push policies to devices.

locker room while wearing a Google Glass. We identify four classes of privacy concerns in

this scenario. First, Word Lens or other untrusted applications running on the Glass may

see sensitive video data, both about the user and about bystanders. Second, the user may

accidentally record bystanders by forgetting to turn off the camera while entering the locker

room. Third, the user may record herself in a locker room mirror and accidentally share

the recording on social media. Finally, malicious users could use the Glass to record others

without their knowledge.

The first three classes of privacy concerns have honest users who want to protect against

untrusted applications and user error. While protecting against malicious users is also

important, current approaches for addressing these privacy concerns do not work well even

for honest users. In this paper we thus assume that users are honest, but that they may

run untrusted applications.

Sensitive locations like locker rooms and bars commonly handle these concerns today

by posting explicit policies that prohibit recording or the presence of recording devices

(including Google Glass [60]), as in Figure 5.1. This approach, however, is hard to enforce

and does little to protect a user from untrusted applications or user error. Users must notice

the sign, then remember to turn off their device.
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A new access control challenge. A natural way to address these privacy concerns is with

application permissions in the operating system. However, continuous sensing and natural

user input pose new challenges to access control design. Today, platforms like Android,

iOS, and Windows 8 deny untrusted applications default access to sensitive resources like

the camera and GPS. To determine which permissions to grant, these OSes put the user in

the loop: with manifests at application installation time (Android, Windows 8) or prompts

at the time of sensitive data access (iOS).

Previous work [50, 138], however, has shown that these permission models are flawed.

Manifests are out of context with applications’ use of sensitive data, making it hard for

users to understand what permissions applications need and why. Prompts are disruptive

and cause “prompt fatigue,” conditioning users to simply click yes.

User-driven access control (Chapter 3) addresses these flaws by coupling permission

granting with user actions within an application (e.g., clicking a special embedded camera

button). Unfortunately, this approach is not well-suited for continuous sensing because

it relies on explicit user interactions with the device. By contrast, continuous sensing

applications are, almost by definition, designed to automatically “do things for you” without

any such explicit actions.

Further, for applications with natural user input, like gesture or voice, the input method

itself relies on the camera or microphone being always accessible. In these settings, per-

mission granting models that allow or deny access to entire sensor streams are too coarse-

grained.

The fundamental new challenge in permission system design for continuous sensing is

thus enabling fine-grained, automatic permission granting. For example, how should the

OS determine which objects in a video frame are accessible to an application? We pursued

multiple unsuccessful attempts to design access control for continuous sensing, which we

discuss in Section 5.4.1. From them, we learned that access control decisions should depend

on objects and people around the user, and that these objects should specify their own

access policies in a distributed, context-sensitive way.

World-driven access control. Our solution is world-driven access control. Using this
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approach, objects, places, and people would present passports to the operating system.

A passport specifies how to handle access control decisions about an object, along with,

optionally, code stating how the object should be recognized. For example, in Figure 5.1, the

locker room might present a passport suggesting that video or audio recording is prohibited.

Passports provide a distributed, context-sensitive approach to access control.

In our design (Section 5.4), a trusted policy module in the OS detects passports, extracts

policies, and applies those policies dynamically to control applications’ access to sensor data.

Our design protects the user from untrusted applications while relieving the user of explicit

permission management. While users can override policies communicated by passports,

applications cannot.

Passports are intended to help users avoid accidentally sharing or allowing applications

to access sensitive data. For example, a workplace can publish a passport stating that

whiteboards are sensitive, helping the user avoid recording (and later accidentally sharing

on social media) photos of confidential information on the whiteboard. In the locker room,

a “no-record” policy helps the user avoid accidentally allowing an untrusted application to

access the video feed of herself undressing in the mirror.

Passports can also help users respect others’ wishes without requiring onerous manual

configuration. At the AdaCamp conference, for example, attendees wear red lanyards to

opt out of photography [4]. A world-driven access control policy can tell the policy module

to remove those attendees from video streams and photos before applications see them. The

user does not need to manually check lanyards or remove the device entirely. Our approach

allows dynamically changing application permissions based on context, such as being at a

conference, without explicit user actions.

Making world-driven access control work requires overcoming multiple challenges. First,

there are many different policy communication mechanisms, ranging from QR codes and

Bluetooth to object recognition, each with different tradeoffs. Second, recognizing passports

and computing policy decisions induces latency for applications. Third, policy decisions

may have false positives and false negatives. Finally, our approach creates a new problem

of policy authenticity as adversaries may attempt to move, modify, or remove markers that

communicate policies. We describe these and other challenges, as well as our approaches
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for addressing them, in the context of our implementation in Section 5.6 and our evaluation

in Section 5.7.

Contributions. We introduce world-driven access control, whereby application access to

sensor data depends on policies specified by real-world objects. Our approach allows the

system to automatically manage application permissions without explicit user interaction,

and supports permissions at the granularity of real-world objects rather than complete

sensor streams. We contribute:

1. World-driven access control, a permission model for continuous sensing that allows

real-world objects to communicate policies using special passports. Our design enables

a distributed, context-sensitive approach for objects to control how sensitive data

about them is accessed and for the system to validate the authenticity of these policies.

2. An extensible system design and implementation in which a trusted policy module

protects users from untrusted applications without requiring the user to explicitly

manage permissions. We evaluate our prototype in five different settings (Section 5.7)

with representative policies from prior work and real-world policies. Our design’s

modularity allows us to implement each policy in under 150 lines of C# code.

3. Empowering objects with the ability to influence access control decisions on users’

devices introduces numerous challenges. We crystallize these challenges and explore

methods for addressing them. For example, we introduce techniques for mitigating

latency and accuracy challenges in detecting and enforcing policies (Sections 5.4-5.7),

such as by combining multiple means of communicating a policy.

In summary, world-driven access control is intended to to relieve the user’s permission

management burden while preserving functionality and protecting privacy in emerging con-

tinuous sensing applications. This work presents a new design point in the space of access

control solutions for continuous sensing applications. We believe that the foundations laid

herein will facilitate further work in the field.

Previous work in this area focused on bystander privacy (e.g., visual or electronic opt-

outs [21, 63, 145]), or is specific to one type of object alone. We discuss related work in

detail in Section 5.9. Finally, while our focus is on continuous sensing, our policies can also
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apply to discrete sensing applications, e.g., a cell phone camera taking a photo, as well as

to output permissions, e.g., permission for a camera to flash or a phone to ring. We reflect

on challenges and discuss other extensions in Section 5.8, then conclude in Section 5.10.

5.2 Goals and Threat Model

We consider fine-grained access control for sensor data on platforms where multiple isolated

applications desire continuous access to system sensors, such as camera, microphone, and

GPS. In our model, the system is trustworthy and uncompromised, but applications are

untrusted.

Goals. Our goal is to help honest users manage applications’ permissions. A user may

do so to (1) protect his/her own privacy by minimizing exposure of sensor information to

untrusted applications, and/or (2) respect bystanders’ privacy wishes. We seek to help the

user achieve these goals with minimal burden; users should not need to continuously manage

permissions for each long-running application.

Constraints. We constrain our model in three ways:

1. We consider only access control policies that are applied at data collection time, not

at data distribution time. These policies affect whether or not an application may

receive a data item — such as a camera frame or audio event — but do not provide

additional data flow guarantees after an application has already accessed the data.

2. Policies apply to applications, not to the system itself. For example, if a policy

restricts camera access, the (trusted) system still receives camera data but prevents

it from reaching applications. We observe that any system designed to apply policies

embedded in real-world sensor data must, by definition, be able to receive and process

sensor inputs.

3. Users can always use another device that does not run our system, and hence can,

if they desire, violate real-world policies with non-compliant devices. Our solution

therefore does not force user or device compliance and, indeed, explicitly allows users

to override access control policies. We consider techniques for verifying device com-

pliance, which have been studied elsewhere [94], out of scope.
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Novel threat model. Our approach empowers real-world objects with the ability to

broadcast data collection policies. Unlike conventional approaches to access control, like

manifests and prompts, we therefore transfer the primary policy controls away from the

user and onto objects in the real world. Thus, in addition to untrusted applications, we

must consider the threat of adversarially-influenced real-world objects. For example, we must

consider malicious policies designed to prevent recording (e.g., criminals might appreciate

the ability to turn off all nearby cameras) or override policies that prohibit recording (e.g.,

someone seeking to embarrass users in the bathroom by causing them to accidentally record).

These threats guide several design decisions, which we will return to later, like the ability

for users to override policy suggestions and our design of passports.

5.3 Real-World Policies

We summarize a sample set of real-world locations with sensor privacy policies (Table 5.1)

that would benefit from world-driven access control. These scenarios motivate the incentive

of establishments to install world-driven policies.

The first two settings are bars that request patrons refrain from taking recordings of

others without permission. For example, the 5 Point Cafe recently banned Google’s Glass

device due to privacy concerns [163] and other Glass bans have followed [60]. Similarly, the

“local gym” and “Goodwill” settings both prohibit recording devices near dressing rooms.

All of these places could specify an explicit “no pictures” policy for a world-driven access

control device.

The next four settings are conventions that set explicit policies around photography [4],

generally requiring asking before taking a photo or prohibiting recording in certain times

or locations (e.g., during a conference session). One policy is more fine-grained, based on

explicit communication from attendees using colored lanyards (where a red lanyard means

“no photos,” a yellow lanyard means “ask first,” and a green lanyard means “photos OK”).

These colors could serve as the foundation for a world-driven access control policy. As

suggested in prior work, such individual policies could also be communicated using a marker

on a shirt [145] or via a communication from the bystander’s phone (e.g., [21, 63]).

Finally, Google’s Street View product, which is powered by cars that regularly drive
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Place Policy

Mercury Ask before photo.
Mercury Avoid people in background of photo.
5Point Cafe No photos, no Google Glass.
Goodwill No recording w/in 15 ft. of dressing room.
Local Gym No cell phone in locker room.
AdaCamp SF Lanyard color indicates photo preference.
Open Source Bridge Provide notice before taking photo.
Sirens Ask before photo.
Sirens No photos during sessions.
WisCon Ask before photo.
Street View Blur sensitive areas, no photos over fences.

Table 5.1: Existing Real-World Policies. Today, multiple places request that people

follow photo and video policies. We report a sample set of places, along with the policy

they request. These policies can be captured by our framework.

through the world and capture panoramic views, has raised significant privacy concerns.

Switzerland only recently allowed Google to collect Street View data, but it required Google

to blur sensitive areas and refrain from taking pictures across fences and garden hedges [125].

These policies could also be enforced by world-driven access control, based on the locations

of sensitive areas or presence of fences.

While today’s real-world policies tend to focus on the privacy of bystanders, always-on

devices like Google Glass will also raise privacy concerns for users. For example, the user

survey that we describe in Section 5.7.1 suggests that many users do not wish to be recorded

by their own wearable devices in sensitive locations (e.g., at home, in the bathroom).

5.4 World-Driven Access Control Design

World-driven access control is based on three principles derived from our initial attempts to

build an access control mechanism for continuous sensing, which we summarize. We then

describe our solution, key challenges we encountered, and how our design addresses these

challenges. Figure 5.2 shows world-driven access control in action, and Figure 5.3 shows a

block diagram of our system.
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5.4.1 Principles from Initial Approaches

Object-driven policies. In user-driven access control (Chapter 3), applications are granted

access to sensitive resources as a result of explicit in-application user interactions with spe-

cial UI elements (e.g., clicking on an embedded camera button). This technique effectively

manages application permissions without the drawbacks of prompts or install-time mani-

fests, and so we attempted to adapt it to continuous sensing.

In some cases, user-driven access control worked well — photos and video chat on Google

Glass, for example, are triggered by explicit user actions like winking or using the touchpad.

However, many promising continuous sensing applications do not involve explicit user input.

For example, the WordLens translation application is object-driven, rather than user-driven:

it reacts to all words it “sees” and translates them without explicit user input. In future

systems, such applications that “do things for you” may run continuously for long periods of

time; they are uniquely enabled by continuous sensing and raise the greatest privacy risks.

Attempting to inject user actions into such applications — such as allowing users to use a

drag-and-drop gesture to grant applications one-time access to information about real-world

objects — felt disruptive and artificial.

From this, we learned that access control decisions cannot depend (only) on user actions

but should instead be object-driven: real-world objects around the user must help determine

access control policies.

Distributed organization. The next problem was how to map from objects to access

control policies. We first attempted to build a taxonomy of which objects are sensitive (e.g.,

whiteboards) or not sensitive (e.g., chairs). Unfortunately, a static taxonomy is not rich

enough to capture the complexities of real-world objects — for example, not all whiteboards

contain sensitive content.

We then attempted to define a hierarchical naming scheme for real-world objects. For

example, we might name an object by referring to the room it is in, then the building, and

finally the building’s owner. We hoped to build a system analogous to the Web’s Domain

Name System, where objects could be recognized in the real world, mapped to names, and
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finally mapped to policies. Unfortunately, because objects can move from one location to

another, policies may not nest hierarchically, and hierarchies not based on location quickly

become complex.

Though there may be value in further attempting to taxonomize the world and its

moving objects, we chose to pursue an approach in which policy decisions are not centralized.

Instead, our design’s access control decisions are distributed : each object is able to set its

own policy and communicate it to devices.

Context sensitivity. Finally, we faced the challenge of specifying an object’s policy. A

first approach here is to have static “all-or-nothing” policies. For example, a person or a

whiteboard could have a policy saying to never include it in a picture, and certain sensitive

words might always mark a conversation as not for recording.

While static policies cover many scenarios, others are more complex. For example,

AdaCamp attendees can opt out of photos by wearing a red lanyard [4]. At the conference,

the lanyard communicates a policy, but outside it does not. Policies may also depend on

applications (e.g., only company-approved apps may record a whiteboard). From this, we

learned that policies must be context-sensitive and arbitrarily complex. Thus, in addition

to static policies, we support policies that are (appropriately sandboxed) executable code

objects, allowing them to evaluate all necessary context.

5.4.2 Background Technology: Recognizers & Events

A key enabler for world-driven access control is the recognizer operating system abstrac-

tion [75]. A recognizer is an OS component that processes a sensor stream, such as video or

audio, to “recognize” objects or other triggers. Upon recognition, the recognizer creates an

event, which is dispatched by the OS to all registered and authorized applications. These

events expose higher-level objects to applications, such as a recognized skeleton, face, or

QR code. Applications may also register for lower-level events, like RGB/depth frames or

location updates.

The recognizer abstraction restricts applications’ access to raw sensor data, limiting the

sensitive information an application receives with each event. Further, this event-driven
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Figure 5.2: World-Driven Access Control in Action. World-driven access control

helps a user manage applications’ permission to both protect his or her own privacy and

to honor a bystander’s privacy wishes. Here, a person in view of a camera asks not to be

recorded; our prototype detects and applies the policy, allowing applications to see only

the modified image with the person removed. In this case, the person wears a QR code to

communicate her policy, and a depth camera is used to find the person, but a variety of

other methods can be used.

Figure 5.3: System Overview. We build on the recognizer abstraction [75], in which

applications subscribe to high-level events generated by object recognition algorithms. Our

contribution is the policy module (Section 5.4.4), which sees all events, detects policies, and

blocks or modifies events accordingly before releasing them to untrusted applications.

model allows application developers to write code agnostic to the application’s current per-

missions [75]. For example, if an application does not receive camera events, it cannot

distinguish whether the hardware camera is turned off or whether it is currently not autho-

rized to receive camera events.

Previous work on recognizers, however, did not study how to determine which permis-

sions applications should have [75]. While the authors discuss visualization techniques to

inform users what information is shared, the burden is on users to manage permissions

through prompts or manifests. World-driven access control removes this burden by dynam-
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ically adjusting permissions based on world-expressed policies.

5.4.3 Policies and Policy Communication

We now dive more deeply into our design. We seek a general, extensible framework for

communicating policies from real-world objects. Our prototype focuses primarily on policies

communicated explicitly by the environment (e.g., by QR code or ultrasound), not inferred

by the system. However, our system can be extended to support implicit or inferred policies

as computer vision and other techniques improve. For example, the recent PlaceAvoider

approach [160] — which can recognize privacy-sensitive locations with training — can be

integrated into our system.

Designed to be a broad framework, world-driven access control can support a wide

range of policy communication mechanisms on a single platform, including QR codes or

other visual markers, ultrasound, audio (e.g., embedded in music), location, Bluetooth, or

other wireless technologies. Additionally, world-driven access control supports both policies

that completely block events (e.g., block RGB frames in the bathroom) and that selectively

modify events (e.g., remove bystanders from RGB frames). Section 5.3 summarized existing

real-world policies (e.g., recording bans) that can be supported by this approach and which

motivate the incentives of establishments to deploy world-driven policies.

A world-driven policy specifies (1) when and for how long it should be active, (2) to

which real-world objects or locations it applies, (3) how the system should enforce it, and

(4) to which applications it applies, if applicable. Elaborating on the latter, policies can

be application-specific, such as by whitelisting known trusted applications. For example, a

corporate building’s policy might block audio input for any application not signed with the

company’s private key.

While conceptually simple, there are numerous challenges for communicating policies

in practice. In our design, we aim to quickly recognize a policy, quickly recognize the

specific objects or locations to which it applies, and accurately enforce it. A challenge in

achieving these goals is that policy communication technologies differ in range, accuracy,

information density, and the ability to locate specific real-world objects. For example,
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Bluetooth or WiFi can be detected accurately across a wide area but cannot easily refer to

specific objects (without relying on computer vision or other object detection techniques).

By contrast, QR codes can help the system locate objects relative to their own location

(e.g., the person to whom the QR code is attached), but their range and detection accuracy

is limited (Section 5.7). Similarly, a QR code can communicate thousands of bytes of

information, while a specific color (e.g., a colored shirt or lanyard [4, 145]) can communicate

much less.

We begin to tackle these challenges with several approaches, and return to additional

challenges (like recognition latency and policy authenticity) in later sections:

Extending policy range. The range of a technology should not limit the range of a policy.

We thus allow a policy to specify whether it is active (1) while the policy signal itself is in

range, (2) for some specified time or location, or (3) until an explicit “end policy” signal is

sensed. For example, a WiFi-based policy for a building might use the first option, and a

QR-code-based policy for a bathroom might use the third option (with “start” and “end”

policy QR codes on either side of the bathroom door). There are challenges even with these

approaches; e.g., the “end policy” signal may be missed. To overcome missed signals, the

QR-code-based policy can fall back to a timeout (perhaps after first notifying the user) to

avoid indefinitely applying the policy.

Increasing information density. Policies need not be specified entirely in a real-world

signal. Instead, that signal can contain a pointer (such as a URL) to a more detailed remote

policy. Based in part on this idea, we introduce passports as a method for dynamically

extending the system with new policy code in Section 5.5.

Combining technologies. Observing that different communications methods have dif-

ferent tradeoffs, we propose the use of hybrid techniques: allowing multiple mechanisms to

work together to express a policy. For example, to remove bystanders wearing a specific

color from RGB frames, a wide-range high-density technology like Bluetooth can bootstrap

the policy by informing the system of the opt-out color; the color helps locate the area to

remove from a frame.
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5.4.4 Policy Detection and Enforcement

There is considerable diversity in the types of policies objects may wish to convey, and

hence our solution must be able to accommodate such diversity. As surfaced in this and

later sections, not all policies are trivial to handle.

World-driven policies are enforced by a trusted policy module on the platform (Fig-

ure 5.3). The policy module subscribes to all (or many) of the system recognizers. Any

of these recognizers may produce events that carry policies (e.g., detected QR codes, WiFi

access points, or Bluetooth signals). The policy module filters events before they are deliv-

ered to applications. The result of event filtering may be to block an event or to selectively

modify it (e.g., remove a person from an RGB frame).

In more detail, the policy module keeps the following state: (1) default permissions for

each application (e.g., from a manifest or other user-set defaults), specifying whether it may

receive events from each recognizer, (2) currently active policies, and (3) a buffer of events

from each recognizer.

Before dispatching a recognizer event to an application, the policy module consults the

default permission map and all active policies. Depending on the result, the policy module

may block or modify the event.

Event modification is complicated by the fact that it may rely on information in multiple

events. For example, if someone wearing a QR code should be removed from an RGB frame,

the modification relies on (1) the person event, to isolate the pixels corresponding to a

person, and (2) the QR code event, to pinpoint the person nearest the QR code’s bounding

box (to whom the policy applies).

The policy module thus uses the buffer of recognizer events to identify those needed to

enforce a policy. Because corresponding events (those with the same frame number or similar

timestamps) may arrive at different times from different recognizers, the policy module faces

a tradeoff between policy accuracy and event dispatch performance. For example, consider

a QR code that begins an RGB blocking policy. If the QR code recognizer is slow and

the policy module does not wait for it, an RGB frame containing the QR code may be

mistakenly dispatched before the policy is detected.
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public interface IPolicy {

string PolicyName();

void Init();

void ApplyPolicyToEvent(

RecognizerEvent inEv, EventBuffer prevEvents,

out RecognizerEvent outEv, out bool modified);

void Destroy(); }

Figure 5.4: Policy Interface. Policies implement this interface. The policy module calls

ApplyPolicyToEvent() for each active policy on a new event for an application. The policy

implementation modifies or blocks the event, and the policy module forwards the result to

the application.

Thus, for maximum policy accuracy, the policy module should wait to dispatch events

until all other events on which a policy may depend have arrived. However, waiting too long

to dispatch an event may be unacceptable, as in an augmented reality system providing real-

time feedback in a heads-up display. We discuss our implementation choice, which favors

performance, in Section 5.6.

5.4.5 Policy Interface

Each world-expressed policy has a fixed interface (Figure 5.4), which allows policy writers

to extend the system’s policy module without dictating implementation. We expect that

policies are typically short (those we describe in Sections 5.6 and 5.7 all require under 150

lines of C#) and rely on events from existing object recognizers, so policy writers need not

implement new recognizers.

The key method is ApplyPolicyToEvent, which is called once for each event dispatched

to each application. This method takes as input the new event and a buffer of previous

events (up to some bound), as well as metadata such as the application in question and

the system’s configuration (e.g., current permissions). The policy implementation uses this

information to decide whether and how to modify or block the event for this application.

The resulting event is returned, with a flag indicating whether it was modified.

The resulting event is then passed to the next policy, which may further modify or block
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it. In this way, policies can be composed. Although later modifications are layered atop

earlier ones, each policy also receives unmodified events in the event buffer used to make

and enforce policy decisions. Thus, poorly written or malicious policies cannot confuse the

decisions of other policies.

Policy code isolation. Policy code can only use this restricted API to obtain and modify

sensor events. Policies must be written in managed code and may not invoke native code,

call OS methods, or access the file system, network, or GPU. (Isolating managed code in

.NET is common with AppDomains [111].) Our restrictions protect the user and the OS

from malicious policy code, but they do impose a performance penalty and limit policies

to making local decisions. Our evaluation shows that we can still express many realistic

policies efficiently.

Policy conflicts. In the case of policy conflicts, the system must determine an effective

global policy. If multiple world-driven policies conflict, the system takes the most restrictive

intersection of these policies. In the case of a conflict due to a user’s policy or explicit action,

recall that we cannot force users or their devices to comply with world-driven policies, since

users can always use hardware not running our system. The system can thus let the user

override the policy (e.g., by incorporating access control gadgets [138] to verify that the

action genuinely came from the user, not from an application) and/or use a confirmation

dialog to ensure that the violation of the world-driven policy is intentional, not accidental,

on the user’s part. This approach also gives users the ability to override malicious or

questionable policies (e.g., policies that block too much or too little).

5.5 Passports: Policy Authenticity and Runtime Extensions

In this section, we simultaneously address two issues: policy authenticity and system exten-

sibility. First, an attacker may attempt to forge, move, or remove an explicit world-driven

policy, requiring a method to verify policy authenticity. Second, new policy communication

technologies or computer vision approaches may become available, and our system should

be easily extensible.

To address both issues, we introduce a new kind of digital certificate called a passport.
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Inspired by real-world travel passports, our policy passport is designed to support policy

authenticity by verifying that a passport (1) is issued by a trusted entity, and (2) is intended

to apply to the object or location where it is observed. To support extensibility, a passport

may additionally contain sandboxed object recognition and/or policy code to dynamically

extend the system.

5.5.1 On the Need for Policy Authenticity

We elaborate here on the need to address attackers who might wish to make unauthorized

modifications to existing policies. Attacker modifications may make policies less restrictive

(e.g., to trick employees of a company into accidentally taking and distributing photos

of confidential information in conference rooms) or more restrictive (e.g., to prevent the

cameras of surrounding users from recording the attacker breaking a law). In particular,

attackers attempting to change policies may employ the following methods:

1. Creating a forged policy.

2. Moving a legitimate policy from one object to another (effectively forging a policy on

the second object).

3. Removing an existing policy.

The difficulty of mounting such attacks depends on the policy communication technology.

For example, it may be easy for an attacker to replace, move, or remove a QR code, but

more difficult to do so for an ultrasound or WiFi signal. Thus, these risks should be taken

into account by object or location owners deploying explicit policies.

The threat of policy inauthenticity also varies by object. For example, it is likely more

difficult for an attacker to forge a policy (like a QR code) affixed to a person than one affixed

to a wall. Thus, for certain types of objects, such as humans, the system may trust policies

(e.g., colored lanyards as opt-outs [4]) without requiring additional verification, under the

assumption that it is difficult to physically manipulate them.
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5.5.2 Signing Passports

The contents and origin of passports must be cryptographically verifiable. There are nu-

merous approaches for such verifiability, ranging from crowd-sourced approaches like Per-

spectives [174] and Convergence [101] to social-based approaches like PGP [182]. While

the certificate authority (CA) model for the Web has known limitations [27], because of

its (current) wide acceptance, we choose to build on the CA model for world-driven access

control. However, we stress that the underlying mechanism is interchangeable.

Building on the CA model, we introduce a policy authority (PA), which is trusted to

(1) verify that the entity requesting a passport for an object or location is the real owner

(i.e., has the authority to provide the policy), and (2) sign and issue the requested passport.

Thus, object or location owners wishing to post policies must submit them to be signed by

one of these trusted authorities. For this approach to be effective, it must be difficult for

an attacker to obtain a legitimately signed policy for an object or location for which he or

she cannot demonstrate ownership.

5.5.3 Describing Objects via Passports

In addition to containing a policy specification, each signed passport contains a description

of the associated object or location. For a fixed location (e.g., on a corporate campus), the

description may specify GPS coordinates bounding the targeted area. For a mobile object,

the description should be as uniquely-identifying as possible (e.g., containing the license

plate of the associated car). Thus, after verifying a passport’s signature, the system also

verifies that the enclosed description matches the associated object or location.

Having a description in the passport helps prevent an attacker from moving a legitimately

signed passport from one object or location to another. Preventing such an attack may

be difficult to achieve in general, as it depends on the false positive rates of the object

recognition algorithm and what is actually captured by the device’s sensors (e.g., the car’s

license plate may not be in view). The key point is that passports give object owners control

over the description, so an object owner can pick the best available description.

We observe that object descriptions may create privacy risks for objects if not designed
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carefully. We return to the tension between description clarity and privacy in Section 5.8.

We further support active object descriptions contained in the passport. Rather than

being simply static (e.g., “car with license plate 123456”), the object description may consist

of code (or of a pointer to code) that directly extends the system’s recognizers (e.g., with

a car recognizer). Beyond aiding policy verification, active descriptions can extend the

system’s basic object recognition abilities without requiring changes to the system itself.

Certificates including code and policy are similar in spirit to the permission objects in .NET

Code Access Security [115], the delegation authorization code in Active Certificates [20], the

self-describing packets in Active Networks [162], or objects in Active DHTs [53], but we are

not aware of previous approaches that dynamically add object recognition algorithms. In

our initial design, the active object descriptions are trusted by virtue of the PA’s signature,

and could be further sandboxed to limit their capabilities (as in Active DHTs [53]).

If the description contained in the passport does not match the associated object, the

passport is ignored — i.e., the system applies a sensible default. For a real-world travel

passport, the default is to deny access; in our case, requiring explicit allow-access policies

on all objects would likely require an unacceptable infrastructure and adoption overhead.

Thus, in practice, the system’s default may depend on the current context (e.g., a public or

private setting), the type of object, or the type of recognizer. For example, a default may

deny face recognition but allow QR code events.

We believe the idea of active object descriptions is of interest independent from world-

driven policies. By allowing real-world objects to specify their own descriptions, the system’s

object recognition capabilities can be easily extended in a distributed, bottom-up manner.

5.5.4 Monitoring Passports

Passport signatures and objects descriptions help prevent attackers from forging or moving

passports. We must also consider the threat of removing passports entirely. Again, because

a deny-access default may create high adoption overhead, a missing passport allows access

in the common case.

As an initial approach, we suggest mitigating this threat by monitoring passports. In
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particular, a policy owner can monitor a passport directly — by installing a device to actively

monitor the policy, e.g., to ensure that the expected QR code or ultrasound signal is still

present — or can include in the policy itself a request that devices occasionally report back

policy observations. While an attacker may also try to manipulate the monitoring device, its

presence raises the bar for an attack: disabling the monitor will alert the policy owner, and

fooling it while simultaneously removing the policy from the environment may be difficult

for some policy communication technologies (e.g., WiFi).

Stepping back, we have explored the problem space for policy passports. The proposed

designs are an initial approach, and we welcome future work on alternative approaches

supporting our core concept that real-world objects can specify their own policies and prove

their authenticity.

5.6 Implementation

While world-driven access control may intuitively appear straightforward, it is not obvi-

ous that it can actually work in practice. We explore the challenges — and methods for

overcoming them — in more detail with our implementation and evaluation. Our prototype

runs on a Windows laptop or tablet and relies on sensors including the Kinect’s RGB/depth

cameras and its microphone, the built-in WiFi adapter, and a Bluetooth low energy (BLE)

sensor. Though this platform is more powerful than some early-generation continuous sens-

ing devices, we expect these devices to improve, such as with specialized computer vision

hardware [29, 127]. Some continuous sensing platforms — such as Xbox with Kinect — are

already powerful enough today.

Sensor input is processed by recognizers [75], many of which simply wrap the raw sensor

data. We also implemented a QR code recognizer using an existing barcode library [1],

a speech keyword recognizer using the Microsoft Speech Platform, a WiFi access point

recognizer, and one that computes the dominant audio frequency.

5.6.1 Policy Module

As described in Section 5.4.4, the policy module subscribes to events from all of the system’s

recognizers and uses them to detect and enforce policies. Before dispatching an event to an
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application, the system calls the policy module’s FilterEvent() method, which blocks or

modifies the event based on currently active policies. To modify an event, it uses recently

buffered events from other recognizers if necessary.

Recall from Section 5.4.4 the policy accuracy versus performance tradeoff: policies can

be detected and applied more accurately if all relevant events have arrived, but waiting

too long impacts event dispatch latency. In our implementation we favor performance: to

avoid delays in event dispatch, we do not match up events precisely using frame numbers

or timestamps, but simply use the most recent events, at the possible expense of policy

accuracy. Alternatively, this choice could be made per application or by user preference.

We quantify the effects of this tradeoff in Section 5.7.

5.6.2 Passports

In addition to static policies (e.g., a simple QR code that activates a pre-installed “block

RGB events” policy), our prototype supports passports by transforming certain recognizer

events into passport lookups. The system appends the text in a QR code or a Bluetooth

MAC address to the base URL at www.wdac-passport-authority.com/passportlookup/. If a

corresponding passport exists, the server provides its URL. The passport contains a policy

DLL that implements our policy interface (Figure 5.4). The system downloads, verifies, and

installs the new policy (if not previously installed).

The process of loading a passport could be optimized by caching server responses. If the

system cannot make a network connection, it misses the passport; a future implementation

could buffer the network request until connectivity is available, in case the policy is still

applicable then. Note that the system does not need a network connection to parse static

(non-passport) policies; passports communicated via certain communication technologies

(e.g., Bluetooth) could also encode their policy code directly rather than pointing to a

server. As noted in Section 5.5, code in a passport could be signed by a policy authority and

sandboxed. Since signature and sandboxing approaches have been well studied elsewhere,

we do not include them in our prototype but rather focus on world-driven access control

functionality.
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5.6.3 Prototype Policies

Block RGB in sensitive area. We implemented several policies blocking RGB events

in sensitive areas, based on QR codes, BLE, WiFi, and audio. For example, a QR code

on a bathroom door can specify a policy that blocks RGB until the corresponding “end

policy” QR code is detected. We can similarly use a BLE emitter to specify such a policy;

BLE has a range of roughly 50 meters, making it suitable for detecting a sensitive area like

a bathroom. Similarly, we use the access point (AP) name of our office’s WiFi network

to trigger a policy that blocks RGB events. (Future APs might broadcast more complete,

authenticated policies.)

We also use our audio frequency recognizer to block RGB events: if a trigger frequency

is heard three 32 ms timeslots in a row, the corresponding policy is engaged (and disengaged

when the trigger has not been heard for three consecutive timeslots). In our experiments, we

used a frequency of 900 Hz; in a real setting, ultrasound may be preferable. Ultrasound is

already used in real settings to communicate with smartphones [165]. More complex audio

communication is also possible, e.g., encoding a policy in the signal [133].

Remove person from RGB. We support several policies to remove bystanders from RGB

frames. First, we support bystanders wearing opt-out QR codes — though our implemen-

tation could easily support an opt-in instead — and filter RGB events to remove the pixels

associated with the person nearest such a QR code’s bounding box. To do so, we use the

per-pixel playerIndex feature of Kinect depth frames. Figure 5.2 shows a modified RGB

frame based on this policy.

As a simpler, more efficient policy to remove people from RGB frames, and inspired by

practices at AdaCamp, we also implemented a color-based policy, using a certain shirt color

to indicate an opt-out. This policy (1) detects a 10x10 pixel square of the target color, (2)

calculates its average depth, and (3) removes RGB pixels near that depth. Thus, this policy

applies to anything displaying the target color, and it avoids the latency of the Kinect’s

player detection. Using a hybrid approach, we also implemented a BLE policy to bootstrap

the color policy (discussed more in Section 5.7).
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Block sensitive audio. We implemented a policy that blocks sensitive audio based on our

speech keyword recognizer. We use a hard-coded grammar that includes words that may

signal a sensitive conversation, such as project codenames like “Natal,” as well as explicit

user commands such as “stop audio.” The policy blocks audio events once such a keyword

is detected, and resumes audio events upon command (i.e., when the user explicitly says

“begin audio”).

5.7 Evaluation

We evaluate along two axes:

1. Policy Expressiveness and Implementation Effort. We show that our architecture can

incorporate a wide variety of policies desired by users and proposed in prior work with

low developer effort (Section 5.7.1).

2. Policy Effectiveness. We explore the effectiveness of policy communication technolo-

gies and world-driven policies implemented in our prototype (Section 5.7.2).

5.7.1 Policy Expressiveness & Implementation Effort

User Survey

We first conducted an online survey to study attitudes toward continuous video sensing.

This study adhered to human subjects research requirements of our institution. The re-

sults confirm our intuition: users do desire privacy from continuous sensing applications.

We conclude that our design addresses a threat that causes concern, and that our policy

abstraction is expressive enough to be useful.

In more detail, we conducted an online survey of 207 anonymous participants recruited

from uSamp, a professional survey service. We aimed to: (1) determine if people are familiar

with wearable cameras, which can be a particularly privacy-sensitive form of continuous

sensing, (2) collect privacy policies that people might want for continuous sensing systems,

and (3) get feedback about specific threats, including the threat of an untrusted application

reading video data.

We showed participants two short videos about wearable cameras. The first video was a
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demonstration of the GoPro wearable camera at the 2011 Consumer Electronics Show [22],

created by an independent news site butterscotch.com. The second video was a review

of Google Glass by the news site CNET.com [28]. We then asked participants about their

familiarity with wearable cameras, clarifying that we did not mean to include standard cell

phones. Subsequently, we asked participants to consider which parts of the day they would

or would not want to record using their own wearable cameras and why. Finally, we asked

participants to rate on an absolute Likert scale how concerned they were about four possible

threats raised by wearable cameras.

We filtered out participants who failed to finish the survey. While we could not ensure

participants paid attention to our videos, we also filtered out participants who answered

the survey too quickly to have finished watching the videos. After filtering, we had 131

total responses. Respondents were 35% male, 65% female, with 9% 18-24, 29% 25-34, 25%

35-44, 17% 45-54, 12% 55-64, and 5% above 65 (percentages do not sum to 100% due to

rounding). We learn:

Wearables are known but still niche. Over half (58%) of participants were familiar with

wearable cameras before watching the videos in our survey. Only 6% had used a wearable

camera themselves, and only 11% had been recorded by one, but 20% knew someone else

who did use a wearable camera. Free-text responses mentioned sports, such as skydiving,

piloting, and skiing, as use cases for wearable cameras. One respondent mentioned I don’t

know them personally but my police officer friend uses one at work, as a work-related use

case. We see this result as evidence that the time is right to explore privacy-preserving

mechanisms for continuous sensing systems, before they become ubiquitous.

Time and location are important privacy policy factors. We asked respondents:

Imagine your entire day being recorded by YOUR OWN wearable camera. Which parts of

your day are you comfortable recording? Which parts of your day are you not comfortable

recording? For the purposes of this question, please do not include unmodified cell phones.

From these free-text answers, we then manually determined if the answer depended on time

or location. For example, the answer “When I am in the bathroom and getting dressed in

the morning” depends on time or location, but “anything goes” does not.
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We found that 45% of respondents gave answers depending on time or location. Bath-

rooms and homes were common places where respondents did not feel comfortable recording,

suggesting that our system should support policies that identify specific places and modify

events passed to untrusted applications accordingly.

A respondent from an earlier pilot survey commented: [I] could talk about unrealistic

things like a camera’s ability to somehow detect people that don’t want to be recorded (without

using a phone app) or to allow commands from subjects being recorded to command the device

to cease and erase the recording, but that’s largely unrealistic. World-driven access control

aims to make such policies realistic.

Multiple threats are important, including untrusted applications. We asked partic-

ipants to consider four distinct threats that would cause them to be uncomfortable recording

video on their own wearable device. For each threat, we asked participants to state how

important the threat is on a 7-point Likert scale. Participants were not asked to relatively

rank threats, i.e., they did not state which threat was “most important.”

For the threat “An application on my phone or device might see the video”, 44% of

respondents rated it as 7, or highly important. (We consider only the highest importance

score to estimate a lower bound of users truly concerned about this threat.) This is the

threat we address in our design. The other three threats and the percentage rating as

highly important were “The device manufacturer might look at the video” (39%), “I might

accidentally share the video” (48%), and “I might give my device to someone else with

the video on it” (45%). Respondents also shared additional threats, including concerns

about access by the U.S. National Security Agency and the threat of an external hacker

compromising the device.

Our design addresses some, but not all, of these threats. We directly address untrusted

applications. We also partially address accidental sharing, because our policies prevent

sensitive data from reaching an application that may later share it. Future work may

extend world-driven access control to address additional threats.

Comparison to in-depth studies. While our surveys reached over 100 people, we could

not perform in-depth follow-up with respondents. Others have studied people’s privacy
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Name Detection Enforcement Lines of Code (C#)

Respectful Cameras [145] Visual indicator Blur faces 84 (QR code) – 104 (color)
Brassil [21] Bluetooth Blur faces 69 (remove person)
TagMeNot [23] QR Code Blur faces 84 (remove person)
Iceberg Systems [84] Ultrasound Disable camera 35 (audible sound)
Parachuri et al. [128] Visual indicator Remove person 84

Table 5.2: Policies in Prior Work. Our architecture generalizes policies from prior

work; this table details those we implemented.

concerns with respect to in-home sensors and video surveillance in more depth (e.g., [24,

25, 102]). While these studies did not, like our, ask explicitly about untrusted applications,

they give valuable insight into the threats seen by people who are living with continuous

sensing and how those might be addressed with world-driven access control.

Policies in Prior Work

We now validate that our policy interface (Figure 5.4) is expressive enough to capture

realistic policies. We implemented a representatives set of policies proposed in prior work

relevant to continuous sensing [21, 23, 84, 128, 145], summarized in Table 5.2. In some cases,

we implemented a slightly different enforcement than the one specified in prior work (e.g.,

removing people from the frame instead of blurring faces), and we note these differences

where applicable. Each policy could be implemented in our prototype with only a modest

number of lines of C# code (between 35 and 104, measured using Visual Studio’s Code

Metrics), indicating that our architecture supports new and diverse policies with modest

additional developer effort.

Other policies exist in prior work, such as a policy to encrypt recordings with a shared key

derived with a distributed prototol [63]. We determined that our system could support this

policy, but for our purposes here we chose not to spend effort reimplementing its protocol.

Our prototype can also handle existing real-world policies (Appendix 5.3).

We conclude that our architecture’s policy abstraction is sufficiently expressive and that

policies can be implemented with modest developer effort.
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Figure 5.5: Example Policy Evaluation. We evaluate start lag (false negatives before

a policy is correctly applied), finish lag (false positives after a policy should have been

stopped), and additional false positives and negatives outside of these lags.

5.7.2 Policy Effectiveness

We evaluate policy effectiveness in representative scenarios. We aim not to maximize effec-

tiveness but to explore policy communication technologies and demonstrate the feasibility

of world-driven access control. We also view our evaluation methodology itself as a contri-

bution for others studying access control for continuous sensing.

Evaluation Methodology

We designed and evaluated representative scenarios, each with one or more environmental

policy triggers (Table 5.3). For example, in the Bathroom scenario, we affixed QR codes on

and near the bathroom door, and we placed a BLE emitter and a smartphone producing a

900 Hz tone inside. In the Person scenario, a person carried a BLE emitter and wore a QR

code and a red color.

We used our prototype to record a trace of raw recognizer events for each scenario.

We constructed scenarios so that a policy was applicable in one continuous segment (e.g.,

a person is only seen once in the Person trace) and that the trace was realistic (e.g., we

turned on a faucet in the bathroom). We then replayed every trace once for each policy

present. Pre-recorded traces let us compare multiple policies on the same trace. Since our

goal is to evaluate feasibility, we consider only one representative trace of each scenario.

We then annotated each trace with ground truth for each policy of interest: whether
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Trace Name Policy Trigger Intended Policy for Targeted Event Type LOC Total Length
Events (sec.)

Bathroom QR Code Block RGB events in bathroom. 24 10435 83
Bathroom Bluetooth Block RGB events in bathroom. 23 10435 83
Bathroom Audio Freq. (900 Hz) Block RGB events in bathroom. 35 10435 83

Person QR Code Remove person from RGB events. 84 7132 60
Person QR Code w/ memory Remove person from RGB events. 89 7132 60
Person Bluetooth+Person Remove person from RGB events. 69 7132 60
Person Color Remove person from RGB events. 104 7132 60

Speaking Speech Keyword Block audio events after keyword. 23 4529 42

Corporate WiFi Block RGB events in corporate building. 23 21064 191

Commute Location Blur location events in sensitive area. 29 475 482

Table 5.3: Evaluated Policies. We constructed scenarios, took traces using our proto-

type, and evaluated the effectiveness of various policies. In the third column, the type of

event targeted by the policy is bolded; the fourth column reports total events in the trace.

the ideal enforcement of that policy would modify or block each event. We compared the

results of the replay for each policy with our ground truth annotations. In particular, we

introduce the following methodology for evaluating the effectiveness of a policy. Considering

only those events that may be affected by the given policy, such as RGB in the Bathroom

trace or audio in the Speech trace, we evaluate the policy as follows.

Specifically, we consider four values: (1) start lag (false negatives before the policy is

correctly applied), (2) finish lag (false positives before the policy is correctly removed), (3)

additional false positives, and (4) additional false negatives. Conceptually, start and finish

lag measure the time it takes to recognize the policy. Additional false positives occur outside

of this region and additional false negatives occur within this region; neither include the

start or finish lag. Figure 5.5 shows each value visually. These values rely, of course, on

specific characteristics of a trace; we attempted to construct realistic evaluation scenarios

to get a conceptual idea of how well these policies work in practice.

We ran our traces with an outward-facing Kinect attached to a Lenovo W520 laptop

(Core i7, 16 GB RAM, 160 GB SSD). This setup let us log traces without affecting events

rates, relying on a large memory to buffer all events until trace completion. Without logging,

we achieved similar rates on a less powerful Samsung tablet (Core i5, 2 GB RAM). We expect
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Trace Name Policy Trigger # Target Start Lag Finish Lag Additional Additional
Events FN FP

Bathroom QR Code 1946 0 (0 sec) 0 (0 sec) 0 0
Bathroom Bluetooth 1946 -50 (-2.1 sec) 183 (7.8 sec) 0 0
Bathroom Audio Frequency (900 Hz) 1946 0 (0 sec) 0 (0 sec) 81 0

Person QR Code 1244 279 (13.5 sec) 0 (0 sec) 88 0
Person QR Code with memory 1244 279 (13.5 sec) 0 (0 sec) 20 0
Person Bluetooth + Person 1244 210 (10.1 sec) 8 (0.4 sec) 0 30
Person Color 1244 147 (6.1 sec) 0 (0 sec) 23 23

Speaking Speech Keyword 375 16 (1.8 sec) 27 (3.0 sec) 0 0

Corporate WiFi 2823 21 (1.4 sec) 0 (0 sec) 171 417

Commute Location 475 14 (14.2 sec) 4 (4.1 sec) 0 0

Table 5.4: Evaluation Results. This table shows the results from running each policy

against the corresponding trace. The first two columns match those in Table 5.3. Figure 5.5

explains how start/finish lag and additional false positives/negatives are calculated.

continuous sensing devices to approach the capabilities of these more powerful machines.

Evaluation Results

We describe lessons learned from our experience, supported by policy-specific evaluations

(Table 5.4 and Figure 5.6).

Adding policy memory reduces jitter. We find that certain policy technologies show

high variability in detection. For example, QR codes are detected only about every third

RGB frame when present, WiFi signals are unreliable at a building’s perimeter (presumably

far from an access point), and audio frequency is sensitive to other ambient audio (e.g.,

running water in the bathroom).

We find that we can minimize this detection jitter by adding memory to the policy.

For example, in the original QR code policy, we consult the most recent QR code event

for each RGB event to determine if the policy should be applied. In the “QR code with

memory” policy, we look farther into the past, consulting up to five recent QR code events

and applying the most recent policy it finds (if any). (One QR code event, or null if no

QR code is found, is generated per RGB frame.) This change makes the QR code policy
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(a) Bathroom Scenario: RGB Blocking

(c) Speech Scenario: Audio Blocking

(b) Person Scenario: RGB Modifying

(d) Corporate Scenario: RGB Blocking

Figure 5.6: Policy Evaluation. The grey regions were annotated as “depends” in

the ground truth, i.e., the human annotator believed that either blocking or not blocking

the event would be acceptable; these events are not counted in Table 5.4. For reference,

Figure 5.5 shows an example evaluation.

more robust: if at least one of five RGB frames results in a correctly detected QR code, the

policy will not jitter in the interim. The tradeoff is that too much memory may lead to a

longer finish lag or more false positives.

Hybrid techniques can improve performance. Technologies can be combined to ex-

ploit their respective strengths. For example, in the Person trace, we used Bluetooth (which

has a wider range) to bootstrap person removal using color or the Kinect’s person detection

(which can localize the object to be modified in a frame). This result challenged our initial

intuition that policies should be detectable via the same sensor as the events to which the

policy applies. We reasoned that if the system is in a state where it misses a policy trigger

(e.g., the camera is off), then it should also be in a state to miss the events to which the
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policy applies (e.g., RGB events). However, this proposal fails due to differences in the

characteristics of different policy technologies.

Bootstrap remote policies early with passports. We experimented with passports in

the Person trace, using Bluetooth and QR codes to load person removal policies. Passports

let us easily extend our system without rebuilding it. Additionally, the latency incurred

by loading policy code can be hidden by bootstrapping it as early as possible. It took on

average 227.6 ms (10 trials) to load and install a passport (197.9 ms of which is network

latency), increasing the start lag by 5-6 RGB frames if the policy is to be used immediately.

Communicating a person’s opt-out via BLE, rather than in a QR code on the person, would

thus allow enough time to load the policy before the person is encountered.

Accuracy and latency may conflict. Recall that we trade off policy accuracy with

performance in our implementation (Section 5.6). Rather than waiting to dispatch an RGB

event until the corresponding QR event arrives, we dispatch all RGB events immediately,

relying on the most recent (possibly out of date) QR code event to detect a policy. We

observe that start lag consists of two components: (1) the time it takes to be in range of

the policy (e.g., close enough to the QR code), and (2) the number of unmodified events

after the policy comes into range but the trigger is not yet recognized. Our choice to trade

off accuracy for performance potentially affects the second component.

We measured the effect of this implementation choice for QR codes. We find that the

accuracy impact is negligible: in the Bathroom trace, the difference is just one frame (40

ms). That is, one RGB event contained a QR code and was let through, but the policy was

applied by the next RGB event. In the Person trace, the lag is four frames (160 ms); these

accuracy differences are not discernible in Figure 5.6. However, the same performance lag

may noticeably impact the user in some cases: to avoid distracting lag between the real and

virtual objects in augmented reality, for example, sensor input events must be dispatched

in as close to real-time as possible [2]. Systems may differ in their requirements.

Better technology will improve accuracy. Because the Kinect has a relatively low

RGB resolution (640x480, up to 30 frames per second), in two traces we simultaneously
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collected additional video using a GoPro camera (1280x1080, up to 60 fps) affixed to the

Kinect (included in Figures 5.6a–b.) We synchronized Kinect and GoPro frames by hand,

downsampling the GoPro points and marking the policy as enforced if any collapsed frames

were blocked or modified. The barcode library could decode QR codes up to one second

earlier in the GoPro traces, with fewer false negatives. The GoPro’s wide-angle lens also

allowed it to decode QR codes in the periphery (e.g., near but not on the bathroom door)

that the Kinect did not see. Thus, as mobile cameras improve, so will their ability to detect

world-driven policies.

We expect that other cases in which our system failed to match ground truth will also

be improved by better technology. For example, the speech keyword recognizer is slow,

resulting in large start and finish lags. Similarly, the start lag is long for all person removal

policies (Figure 5.6b) because the trace involves approaching the person down a hall, and

no method is effective until the camera is close enough.

World-driven access control is practical. Our experiences suggest that world-driven

policies can be expressed with modest developer effort, that the system can be seamlessly

extended with passports, and that policies can be detected and enforced with reasonable

accuracy given the right choice of technology. Even without advances in computer vision or

other technologies, world-driven access control already significantly raises the bar in some

scenarios — e.g., the accuracy of our system in the bathroom setting.

5.8 Reflections and Future Work

Continuous sensing applications will become increasingly prevalent as technologies like

Google Glass and Microsoft Kinect become more ubiquitous and capable. World-driven

access control provides a new alternative to controlling access to sensor streams. As our

work uncovers, important challenges arise when attempting to instantiate this approach in

a real system. One key challenge is the tradeoff between policy detection accuracy and

enforcement latency. A second key challenge is the need to verify the authenticity of sig-

nals communicated from real-world objects. Though we designed and evaluated specific

approaches for overcoming both challenges, future insights may lead to alternate solutions.
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We highlight these challenges in this section, with the hope of providing targets for and

benefiting future researchers focused on access control for continuous sensing.

We also highlight a separate challenge: the tension between the specificity of the in-

formation broadcast in a policy and an object’s privacy. While specific object descriptions

(e.g., “no pictures of car with license plate 123456”) are valuable both for policy verification

and for extending the system’s object recognition capabilities, they reveal information to

anyone receiving the broadcast. We view this issue as separate from our study of how to

effectively communicate and manage world-driven policies, our primary goal, but we believe

it is important to consider if world-driven access control systems are deployed with highly

expressive policies. Currently, policy creators must balance policy accuracy and description

privacy, considering evolving social norms in the process. Since specific object descrip-

tions in passports are nevertheless valuable for verifying that a policy has not been moved

by an adversary, we encourage future work on privacy-preserving, expressive policies (e.g.,

encrypted policies accessible only by trusted policy modules).

A separate privacy issue arises with the use of cryptographic signatures on policies: if

the signatures on each object are unique, then they can be used to track objects; we observe,

however, that there are many other methods to track objects today (e.g., RFIDs, Bluetooth

IDs, MAC addresses), and hence consider the issue out of scope.

Finally, as described, world-driven access control can use diverse mechanisms to com-

municate policies. We implemented and evaluated several approaches for explicitly com-

municating policies, and we encourage further study of other approaches. For example, our

design is general enough to encompass implicitly communicated policies. Implicit policies

may rely on improved computer vision (e.g., to recognize sensitive locations, as in PlaceAv-

oider [160]) or be inferred from natural human behavior (e.g., closing a door or whispering).

Other examples of work in this area are Legion:AR [89], which uses a panel of humans

to recognize activities, and work on predicting the cost of interruption from sensors [72].

Additionally, to improve policy detection accuracy, systems may include additional policy-

specific sensors, such as cameras, whose sole purpose is to sense policies, allowing them to

be lower-power than user-facing sensors [92].
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5.9 Additional Related Work

We have discussed inline prior works that consider bystander privacy, allowing them to opt

out with visual (e.g., [145]) or digital markers (e.g., [21, 63]). TagMeNot [23] proposes QR

codes for opting out of photo tagging. These designs rely on compliant recording devices or

vendors; other systems aim to prevent recording by uncooperative devices, e.g., by flashing

directed light at cameras [130]. Recent work studied bystander reactions to augmented

reality devices and surveyed design axes for privacy-mediation approaches [33].

Others have considered the privacy of device users. Indeed, Starner considered it a

primary challenge for wearable computing [156]. Though wearable devices can improve

security (e.g., with location-based or device-based access control, as in Grey [17]), data

collected or sent by the device can reveal sensitive information. Such concerns motivate

privacy-preserving location-based access control (e.g., [10]). Here, we assume that the device

and system are trustworthy.

Others have also restricted applications’ access to perceptual data. Darkly [76] inte-

grates privacy protection into OpenCV, and the “recognizer” abstraction [75] helps limit

applications’ access to objects in a sensor feed; we build on these ideas. PlaceAvoider [160]

identifies images captured in sensitive locations and withholds them from applications. Pi-

Box [90] restricts applications from secretly leaking private data, but provides weak guar-

antees when users explicitly share it. Our approach helps users avoid accidentally sharing

sensitive content with untrusted applications.

5.10 Conclusion

This chapter has revisited the key challenge of application permission granting identified in

Chapter 1, and first considered in Chapter 3, in a new technological context. Continuous

sensing applications on platforms like smartphones, Google Glass, and XBox Kinect raise

serious access control challenges not solved by current techniques, including user-driven

access control (Chapter 3). This chapter introduced world-driven access control, by which

real-world objects specify per-application privacy policies. This approach aims to enable

permission management at the granularity of objects rather than complete sensor streams,
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and without explicitly involving the user. A trusted platform detects these policies in the

environment and automatically adjusts each application’s “view” accordingly.

We built an end-to-end world-driven access control prototype, surfacing key challenges.

We introduced passports to address policy authenticity and to allow our system to be dy-

namically extended. We mitigated detection inaccuracies by combining multiple policy

communication techniques and introducing memory into policies. Finally, we explored the

tradeoffs between policy accuracy and performance, and between broadcast policies and

privacy.

Our prototype enforces many policies, each expressed with modest developer effort, with

reasonable accuracy even with today’s technologies and off-the-shelf algorithms. Our experi-

ences suggest that world-driven access control can relieve the user’s permission management

burden while preserving functionality and protecting privacy. Beyond proposing and eval-

uating a new design point for access control in continuous sensing, this work represents a

step toward integrating physical objects into a virtual world ; we believe our efforts lay the

groundwork for future work in this space.
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Chapter 6

CONCLUSION

Modern and emerging client platforms, including browsers, modern operating systems

like smartphones, and emerging platforms like augmented reality systems, provide great

benefits to their users. Unfortunately, the untrusted applications that users may install

on these platforms come with security and privacy risks. For example, advertisements on

websites may track users’ browsing behaviors, smartphone malware may secretly send costly

SMS messages, and even legitimate applications on smartphones and other platforms may

leak or misuse users’ private data (e.g., sending the user’s location to third-party servers).

This dissertation identified and characterized two fundamental security and privacy chal-

lenges due to these untrusted applications: (1) embedded third-party principals, which come

with security and privacy implications for both the embedded content and the host appli-

cations, and (2) application permission granting, where users are asked to make decisions

about which permissions an application should receive, for which today’s approaches are nei-

ther sufficiently usable nor secure. This dissertation explored and addressed these challenges

in the contexts of browsers and the web, modern operating systems such as smartphones,

and emerging continuous sensing and augmented reality platforms.

With respect to the first challenge — embedded third-party principals — this dissertation

first studied third-party tracking enabled by embedded content on the web (Chapter 2), and

then considered more generally a set of requirements and techniques for securing embedded

user interfaces (Chapter 4). With respect to the second challenge — application permis-

sions — this dissertation leveraged secure embedded user interfaces to enable user-driven

access control as a permission granting model for today’s smartphone applications (Chap-

ter 3), and then developed world-driven access control as a new permission granting model

for emerging continuous sensing applications in which explicit user actions are infrequent

(Chapter 5). The ideas presented in this dissertation have resulted in several concrete
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software artifacts that have been made available to the community: TrackingObserver, a

browser-based web tracking detection platform; ShareMeNot, a new defense for social media

widget trackers that protects privacy without compromising the functionality of the wid-

gets; and LayerCake, a modified version of Android that securely supports cross-principal

user interface embedding, enabling, among other things, the access control gadgets central

to user-driven access control. Together, these works mitigate many of the risks posed by

untrusted applications and provide a foundation for addressing two fundamental challenges

in computer security and privacy for modern and emerging client platforms.
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