
User-Driven Access Control:
A New Model for Granting Permissions in Modern Operating Systems

Franziska Roesner∗

Qualifying Examination Project — April 19, 2011
Advised by Tadayoshi Kohno (UW) and Helen Wang (MSR)

Abstract

Modern client platforms, such as iOS, Android, and web browsers, run each application in an isolated en-
vironment with limited privileges. A pressing open problem in such systems is how to allow users to grant
applications access to user-owned resources, e.g., to privacy- and cost-sensitive devices like the camera or to
the user’s data that resides with various applications. A key challenge is to enable such access in a way that is
non-disruptive to users while still maintaining least-privilege restrictions on applications.

In this paper, we propose user-driven access control, whereby permission-granting is built into existing user
actions, rather than added as an afterthought via manifests or prompts. To this end, we introduce two OS-
level techniques, access control gadgets and kernel-recognized gestures, for controlling access to user-owned
resources. Our prototyping and evaluation experience indicates that user-driven access control is a promising
solution for the problem of granting permissions for user-owned resources on modern client platforms.

1 Introduction
Many modern client platforms treat applications as distinct, untrusted principals. For example, smartphone op-
erating systems like Android [2] and iOS [3] isolate applications into separate processes with different user IDs,
and all web browsers implement the same-origin policy [32], which isolates one web site (or application) from
another. By default, these principals receive limited privileges; they cannot, for example, access arbitrary devices
or write to a global file system. From a security perspective, this is an improvement over desktop systems, which
treat users as principals and grant applications unrestricted resource access by virtue of installation.

Unfortunately, these systems fail to provide adequate functionality and security for access to the user’s data
and resources. From a functionality standpoint, isolation inhibits the client-side manipulation of user data across
arbitrary applications. For example, the isolation of web sites makes it difficult to share photos between two
online providers (e.g. Picasa and Flickr) without manually downloading and re-uploading them. From a security
standpoint, existing access control mechanisms tend to be coarse-grained, abrasive, or inadequate. For instance,
they require users to make uninformed decisions at install time via manifests [2, 4], or they unintelligently prompt
users to determine their intent [3, 21].

Thus, a pressing open problem in these systems is how to allow users to grant applications access to user-
owned resources, such as privacy-and cost-sensitive devices (such as the phone or camera), system services (such
as the contact list or clipboard), and user content (such as photos or documents) stored with various applica-
tions. To address this problem, we propose user-driven access control, whereby the system infers user intent via
authentic, natural user actions.

In particular, we introduce two operating system techniques to infer user intent: (1) access control gadgets and
(2) kernel-recognized gestures. As with web mashups, access control gadgets allow developers to easily integrate
kernel-level access control into an application context, while still allowing the kernel to infer authentic user intent.
Kernel-recognized gestures bind certain keyboard, mouse, or touchscreen gestures to permission-granting events
and standardize them across applications.

∗In collaboration with Tadayoshi Kohno (UW), Alexander Moshchuk, Bryan Parno, and Helen Wang (MSR). Work done in part while
employed by Collabera as a contractor for Microsoft Research.



Together, these techniques support generic access-control metaphors such as copy-and-paste, drag-and-drop,
global search, file or content picking, device access, and long-term relationships among applications. They min-
imize unintended access by granting limited permissions to applications only when requested by the user, and
they place a minimal burden on users by extracting a user’s access-control intentions from his or her current
actions and tasks (rather than, e.g., via prompts).

We built a prototype of user-driven access control into a system that isolates applications based on the same-
origin policy. We use our prototype to evaluate access control gadgets and kernel-recognized gestures with respect
to the functionality provided to users, as well as the impact of these techniques on existing applications. We find
that kernel support for user-driven access control imposes nearly no performance overhead; e.g., it adds only
0.02 ms of delay to drag-and-drop events compared to Windows. A quantitative security evaluation shows that
our system prevents a large swath of user-resource vulnerabilities. Finally, we include targeted user study data to
support our design decisions.

In summary, we make the following contributions:
• We introduce the concept of user-driven access control for systems with strongly isolated least-privilege

applications, whereby the intent embedded in user actions is translated into system-level access control
decisions.

• We propose access control gadgets, which enhance application customizability while accurately capturing
user intent, and we establish kernel-recognized gestures as a first-class access-control primitive.

• We demonstrate that user-driven access control can be added to a system in a manner that provides good
performance, security, and extensibility.

2 State of the Art in Permission Granting
In this section, we motivate our work by identifying shortcomings in existing systems.

Global Resources. Traditional desktop systems expose user-owned resources to applications simply by globaliz-
ing them. Similarly, smartphone operating systems expose a global clipboard to applications. While user-friendly
in the benign case, this model violates least privilege and allows unintended accesses (e.g., [9]). Our user study
(Section 6.5) indicates that such exposures contradict user mental models (e.g., users expect data on the clipboard
to remain private until pasted).

Manifests. Platforms like Android [2] and Facebook [10] use install-time manifests to allow applications to
request permissions to access user-owned resources. Once the user agrees, the installed application has permanent
access to the requested resources. This violates least privilege, as installed applications may access these resources
at any time without explicit user consent. Furthermore, studies indicate that many applications ask for more
permissions than needed [5, 11], and recent Android malware outbreaks suggest that users still install applications
that ask for excessive permissions [4].

Prompts. By contrast, iOS [3] prompts users the first time an application wishes to access a resource. Similarly,
Windows displays a User Account Control prompt [21] when an application requires additional privileges to alter
the user’s system. While these prompts attempt to verify user intent, in practice, the burden they place on users
undermines their usefulness. Specifically, when the user intends to grant access, the prompts seem unnecessary,
so users learn to ignore them [24, 45].

No Access. Some systems simply do not support application access to user-owned resources. For example,
today’s web applications cannot access a user’s local devices except through browser plugins (which have access
to all user-owned resources, thereby violating least privilege). While various efforts (such as HTML5) aim to
allow web applications to access devices directly [39, 41], they have not yet specified how user actions should be
mapped to access-control decisions. Research browsers [7, 13, 42] as well as browser operating systems [38, 43]
also have not addressed access control for user-owned resources.

2



Figure 1: Application Model. As in web mashups, applications may embed other applications, as shown in this example.
Each application is isolated and runs atop a generic runtime (e.g., a browser renderer or Win32 library).

3 Problem Definition and Goals
We consider the problem of allowing a system (Section 3.1) to accurately capture a user’s access control decisions
for user-owned resources (Section 3.2). Any solution in this space must minimize the burden on users while
also minimizing unintended access. Section 3.3 presents the threats that may result in unintended access.

3.1 System Model
We assume that applications are isolated from each other according to some principal definition (such as same-
origin policy), share no resources, and have no access to user-owned resources by default (see Figure 1). Applica-
tions may, however, communicate via IPC channels. Existing systems (e.g., browsers and smartphones) support
many of these features and could be modified to support the rest.

We further assume that applications (and their associated principals) may embed other applications (princi-
pals). For instance, a search engine may embed an advertisement. Like all applications, embedded principals
are isolated from one another and from the outer embedding principal; this is unlike commercial browsers today,
where all principals embedded on one web page share the same OS-level process [31]. We assume that the kernel
has complete control of the display and that applications cannot draw outside of the screen space designated for
them. An application may overlap, resize, and move embedded applications, but it cannot access an embedded
application’s pixels (and vice versa) [36, 42].

To provide access control for user-owned resources, a system must support both access control mechanisms
and access control policies. For the latter, to simplify the discussion, we assume that for each user-owned resource,
there is a set of system APIs that perform privileged operations over that resource. The central question of this
work is how to specify policies for these mechanisms in a user-driven fashion.

3.2 User-Owned Resources
In this work, we study access control for user-owned resources. Specifically, we assume that by virtue of being
installed or accessed, an application is granted isolated access to basic execution resources, such as CPU time,
memory, display, and disk space. We consider all other resources to be user-owned, including:

1. Privacy- or cost-sensitive devices, both physical (such as the phone, the microphone, the GPS, and the
printer) and virtual (such as the clipboard, the form autocomplete data store, the contact list, preferences,
and the “transient clipboard” where data is stored during a drag-and-drop operation).

2. User-controlled capabilities or settings, such as wiping or rebooting the device.
3. Content, such as photos or documents, that resides in various applications.

3.3 Threat Model
We consider the attacker to be a malicious or compromised application, but we assume that the kernel is trustwor-
thy and uncompromised; hardening the kernel is an orthogonal problem that has received considerable attention

3



Figure 2: Access Control Gadget (ACG) Overview. An application may embed ACGs to allow users to grant it resource
access (to the camera and the clipboard, in this example). The ACGs are owned by their respective ACG providers, which
instruct the kernel to grant the embedding applications access.

(e.g., [28, 35, 44]). We assume attacker-controlled applications have full network access and can communicate
via IPC to other applications on the client-side.

We classify potential threats to user-owned resources into three classes:
1. When: An application accesses user-owned resources at a moment when the user did not intend.
2. Who: An application other than the one intended by the user accesses user-owned resources.
3. What: An application grants access to content other than that specified by the user. This false content may

be malicious content intended to exploit another application, and/or it may be a user’s authentic content,
but not the content to which the user intended to grant access (leaked content).

In this work, we restrict this model in two ways. First, we do not address the problem of users misidentifying
a malicious application as a legitimate application. For example, a user may mistakenly grant camera access
to a fake, malicious Facebook application. Principal identification is an orthogonal problem to the problem of
user-driven access control. Second, we do not consider the class of attacks on “what” data is accessed. Input
sanitization to protect against malicious content is a separate research problem. Furthermore, since we assume
that applications have full network and IPC access, an application that already possesses user data can always
choose to leak it. Techniques like information flow control may help remove this assumption [17, 46], but again
is orthogonal to our investigations.

4 Design: User-Driven Access Control
We investigate user-driven access control for user-owned resources in systems that strongly isolate applications.
In particular, we develop two OS-level mechanisms that capture the user intent inherent in existing user actions.
Access control gadgets (Section 4.1) allow applications to embed access control in an application context, while
preserving the kernel’s ability to authentically determine user intent. To provide shortcuts for common actions,
we support kernel-recognized gestures (Section 4.2). These two techniques combine to support a broad range of
natural metaphors by which users indicate access control decisions. These include drag-and-drop, copy-and-paste,
global search, file or content picking, and device access.

4.1 Access Control Gadgets
At a high-level, an access-control gadget (ACG) is provided by an ACG provider, a principal trusted to exclusively
mediate access to a particular user-owned resource (e.g., the camera). The provider exposes one or more gadgets
that other applications can embed in their UI, similar to a web mashup (see Figure 2). For example, the clipboard
provider may expose gadgets for cut, copy, and paste — we will return to more complex examples of ACGs in
Section 4.1.4. The kernel enforces display isolation between embedded applications, and ensures that ACGs only
receive authentic user inputs.

Based on the user’s interactions with the ACG UI, the ACG provider instructs the kernel to grant the em-
bedding application access to the resource via the appropriate mechanism (i.e., updating the kernel-level access

4



Figure 3: Example Access Control Gadgets. ACGs apply to a broad range of user-driven access control, including (a)
content picking, (b) copy-and-paste, and (c) device access.

control list or directly mediating content transfer — see Section 4.3 for more details). The kernel enforces a num-
ber of properties to ensure the authenticity of the interactions between the user and the ACG (Section 4.1.2). Our
design ensures the robustness of ACGs and adheres to the principle of least privilege (Section 4.1.3).

ACG providers are not device drivers (which reside in the kernel), but rather sit at a higher level of abstraction.
For example, there is only one abstract camera resource, even if the system supports many hardware cameras.

4.1.1 Design Rationale

In designing ACGs, we aim to distill the advantages (and avoid the disadvantages) of two extreme points in the
design space. At one extreme, the OS could permanently reserve a portion of the UI (e.g., a bar at the top of the
screen) for access control decisions. This prevents malicious applications from manipulating the UI, but it limits
how a legitimate app can customize the access control experience. Users are accustomed to making access-control
decisions within an application context in ways that cannot easily be replicated by a fixed kernel UI. For example,
many programs allow users to paste via context menus or toolbar buttons; indeed, a study of Microsoft Office
data indicates the paste button is the most clicked button on the toolbar [14], despite several other more efficient
options for pasting. Finally, particularly on newer client platforms like tablets and smartphones, screen real estate
is at a premium; dedicating this resource to infrequent access-control decisions is wasteful.

At another extreme, the application could request an OS prompt whenever an access control decision is needed,
so that, most of the time, the full UI would be available for application usage. However, prompts limit customiz-
ability, disrupt the user’s interactions with the application, and have all of the shortcomings we discussed in
Section 2.

Our design of ACGs provides the authenticity of dedicated real estate without monopolizing the display.
ACGs integrate into the application, rather than disrupting it as prompts do. In Section 4.2, we introduce kernel-
recognized gestures, which share many of these benefits and act as shortcuts for some popular ACGs. However,
kernel-recognized gestures potentially limit applications by restricting the “palette” of gestures the application
can employ, so we aim to use them sparingly. They also do not offer the full expressiveness of an ACG.

4.1.2 Ensuring Authentic Interactions with ACGs

To accurately convert the intent of user actions into OS-level access control decisions, the kernel must ensure the
integrity of user interactions with ACGs. In particular, if we model the user’s basic interactions with the ACG as
the following “protocol”:

ACG→ User: Purpose (e.g., toggle camera access)
User→ ACG: Intent (e.g., please grant camera access)
ACG→ User: Status and/or revocation option

then the kernel must ensure the integrity of each “message” and authenticate the source of User messages; we
discuss these protections below. Helping the user distinguish fake ACGs from real ACGs is less critical; a fake
ACG cannot grant the embedding application access to any additional resources. However, applications that

5



embed other applications complicate this picture, as it potentially makes it more difficult for the user to distinguish
which app will be authorized by interactions with an ACG. We discuss this complication below.

Protecting ACG Purpose Indicators. To provide integrity for the ACG’s “Purpose message” (e.g., displaying a
“Copy” button), the kernel only activates an ACG when the entire ACG is visible (i.e., at the top of the display’s Z
ordering), since any overlays could manipulate the ACG’s message. For example, a malicious application might
try to overlay its own labels to reverse the meaning of an ACG’s copy and paste buttons. For the user to accurately
receive the ACG’s message, we must also ensure the user has time to perceive it. Thus, the kernel only activates
an ACG after it has been fully visible for at least 200 ms (we use a fade-in animation to convey the activation
to the user). This delay gives the user sufficient time to react [18], and we postulate (as do the developers of
Chrome [6] (Issue 52868) and Firefox [25] (Advisory 2008-08)) that it does not inconvenience the user in normal
circumstances. The ACG is disabled (and greyed out) if any portion becomes obscured.

Protecting User Intent Indicators. To protect the user’s “Intent messages” (e.g., mouse clicks), the kernel
transmits to ACGs only input events that originated from physical devices (e.g., keyboard, touchscreen, or mouse).
Other software cannot generate these user-initiated messages. Equally important, the kernel must protect input-
related feedback on the screen. For example, the kernel controls the display of the cursor and ensures that a
kernel-provided cursor is displayed when a user hovers over a gadget. This contributes to the previous property
(ensuring gadgets are at the top of the visual stack), and prevents a malicious application from confusing the user
about where they are clicking within an ACG.

Protecting Status and Revocation Options. Finally, the user should be able to assess the status of the access
control provided by an ACG (e.g., determine that camera access is enabled) and indicate a desire to revoke that
access (e.g., terminate an application’s ability to take pictures). To support this, the kernel provides an ACG
“Control Panel”, i.e., a trusted application that can always be accessed via a secure attention sequence (e.g.,
Ctrl-Alt-Delete). The ACG Control Panel allows the user to survey the state of the system’s ACGs and access
revocation functions. Prior work suggests mechanisms for intuitively conveying access status [15, 30].

Nested Principals. Care must be taken to accurately capture user intent when an application includes embedded
principals (e.g., a web search engine which embeds ads), which may be arbitrarily nested (e.g., a mashup page
which embeds a web search engine which embeds ads). In particular, the kernel must prevent an embedded
application from tricking users into believing that the gadget it owns is actually owned by the outer embedding
application. For example, a malicious ad embedded in google.com might embed an ACG for GPS access.
If the ad customizes its UI to mimic Google, the user may be tricked into thinking the GPS gadget will grant
geolocation access to Google, rather than the ad.

To prevent such confusion, only a “top-level” or outermost application may embed ACGs by default, though
it may choose to grant the applications it embeds the permission to themselves embed ACGs. While we do not
attempt to solve the principal identification problem (see Section 3.3), we postulate that of all the various principals
on the system, the user is most likely to understand and identify top-level principals, rather than principals that may
be nested arbitrarily deeply in other applications. Furthermore, compared with the OS, the embedding application
has at least as much information (and typically more information) about the principals it embeds. For example,
Google can distinguish embedded ads that should not receive geolocation access and embedded services, such as
Google Maps, that should.

4.1.3 Keeping ACGs Robust

Since ACGs are trusted entities, we design them to have minimal privileges and to be robust against the conse-
quences of a coding, design, or UI error.

Source. For simplicity, we currently require ACG providers to come pre-configured with the operating system;
they are updated via the same update mechanism used for OS updates. An application can query the system to
learn about available ACGs and their capabilities, similar to how COM objects are discovered today. However,
unlike COM, applications cannot request that a new ACG be installed.

Design Philosophy. ACGs should be kept simple and limited; like early Unix programs, they should do one thing
and do it well. If an ACG provides any customizability (generally discouraged), it should be extremely limited.

6



For example, rather than allowing an application to specify an arbitrary font size, an ACG might allow the app to
choose from a few possible font sizes in the system’s default language.

Furthermore, each ACG provider operates as a distinct OS principal and manages a single user-owned re-
source. This provides defense in depth and respects the system’s spirit of least privilege. A compromise of one
gadget provider will not affect the security of any other resource.

Restrictions. Finally, to limit opportunities for compromise, ACGs are permitted neither network access nor
IPC access. An ACG and its embedding application need not communicate directly: if the ACG provides any
customization options, the application can select amongst them when it creates the embedding. Software updates
of the ACG included with OS updates.

4.1.4 Example ACGs

In this section, we describe several examples of how ACGs apply to various user-driven access-control scenarios.
As depicted in Figure 3, ACGs can be used to grant an application access to arbitrary user-owned resources. This
access may be granted for different access durations (one-time, session-based, permanent), though some devices
may not support all durations (e.g., the printer and the clipboard support only one-time access). We discuss
duration in more detail in Section 4.1.5.

Device Access. To request access to a device like the camera or the printer, an application may embed camera
or printer ACGs. When a user clicks on one of these ACGs, the application either receives content (e.g., from
the camera) or is prompted for content (e.g., to send to the printer). Similarly, an application may use ACGs to
request access to any device supported by the system.

Content Picking. As a more complex example, we describe our design for a content-picking (a generalization of
“file picking”) ACG provider that lets users browse cross-application content. Within the ACG, the user selects
one or more content items; the embedding application is then granted access to that content.

The content-picking provider exports two gadgets: (1) A gadget similar to the one shown in Figure 3(a) to
initiate content picking, and (2) A gadget that provides an interface for viewing and selecting content.

As shown in Figure 4, the second gadget allows the user to navigate content across applications. The content-
picking provider does not gain access to the user’s content across applications. Rather, when the user initiates
content picking, the content-picking provider, via the kernel, prompts the queried applications to return content
views the second content-pick gadget embeds. When the user selects a content view, the embedding application
is granted access to that content.

Like all embedded principals, the content view is isolated from the principal that embeds it (in this case the
content-picking ACG). We chose this design for two reasons: (1) The content in the content view comes from
arbitrary applications and is not trusted. By isolating the content view, we protect the trusted content-pick ACG.
(2) Allowing each application to control its own content views allows it to intelligently control user interaction
with the content based on its semantics (e.g., Facebook friends are a specialized kind of content that would lose
richness if handled generically).

User Data Search. Rather than picking specific content, a user may wish to search his or her applications. We
provide this functionality via an ACG that implements the equivalent of cross-application desktop search.

Similar to the content-picking example, the search ACG exports two gadgets an application can embed. The
first triggers the main search gadget. When triggered, the search gadget allows the user to select a subset of
applications. Via the kernel, the ACG submits the user’s query to these applications, which define search according
to their own semantics, including whether the content search is local, remote, or both. As before, the search
gadget is not exposed to the search results themselves, which are displayed via content views returned (along with
a relative ranking) by the applications. As with traditional desktop search, the search gadget must interleave the
returned results appropriately and display them to the user. Future work must consider how the search gadget
should rank results received from different and potentially untrusted applications.

When the user selects a result, the application that embedded the search gadget is granted access to that result.
This process is identical to the content picking process depicted in Figure 4.

7



Figure 4: Content Picking via ACGs. An application may embed a content-picking ACG. When the user (1) interacts with
the ACG, the ACG provider (2) prompts the kernel to (3) query the selected applications for content. The queried applications
return isolated content views, which are (4) passed to the ACG provider, which (5) embeds them in the content-picking ACG.
The user may select content from one of these views, thereby enabling the original embedding application to access it.

4.1.5 Duration of Access Control Decisions

An ACG may specify that a particular permissionshould be one-time, session-based, or permanent; see Section 4.3
for more detail. Session-based access is revoked when the application is closed. Both session-based and perma-
nent access may be revoked by the user via the appropriate ACG. Recall from Section 4.1.3 that the kernel ensures
the user can always access the system’s ACGs, even if the original application is closed or refuses to cooperate.

It is the ACG provider’s responsibility to decide how to expose these options (if at all – devices like the
printer and the clipboard may support only one-time access). For example, the camera ACG might display three
variants of a camera button to allow the user to indicate whether to provide one-time access (e.g., a single photo),
session-based access (e.g., a video stream for a Skype call), or permanent access (e.g., to photo editing software).

4.2 Kernel-Recognized Gestures
4.2.1 Overview

To increase the usability of a variety of common access control decisions, we introduce the use of authentic short-
cuts via kernel-recognized gestures. Kernel-recognized gestures bind certain keyboard, mouse, or touchscreen
gestures to permission-granting events and standardize them across applications. In other words, the kernel moni-
tors the stream of inputs from the user. When it recognizes a particular gesture or sequence of inputs (e.g., Ctrl-C),
it interprets that gesture as granting access permissions to the in-focus application (e.g., granting it the ability to
write data to the clipboard).

As we discuss in Section 7, while prior work has suggested specific reserved gestures [12, 33, 36], we gen-
eralize this notion and make it a first-class primitive for supporting user-driven access control. Note that kernel-
recognized gestures are similar to, but distinct from, secure attentions sequences like Ctrl-Alt-Del [16]. Secure
attention sequences are also kernel-recognized and intercepted gestures, but they allow the user to bring up an
authentic kernel-owned UI (usually a login prompt). By contrast, our kernel-recognized gestures are used by the
kernel to interpret genuine user intent and are mapped to system-level access control decisions for applications.

4.2.2 Usage

Kernel-recognized gestures allow the system to support shortcut-based copy-and-paste as well as the drag-and-
drop gesture, both common access control idioms in desktop operating systems. In particular, a user may use
the reserved Ctrl-X, Ctrl-C, and Ctrl-V shortcuts to permit data access between applications via the clipboard.
Similarly, a user may use the reserved drag-and-drop gestures to permit data access between applications via
the transient clipboard. The system also supports other shortcuts to allow users to grant various permissions to
applications, including Ctrl-P for print or PrtScn for a screenshot.

8



To assess whether kernel ownership of these gestures would unduly restrict applications, we performed an
analysis of the top 100 unique1 Windows applications based on data from July to August 2010. We found that
100% of these applications support standard copy-and-paste gestures (Ctrl-X, Ctrl-C, Ctrl-V) or simply do not
support copy-and-paste (e.g., the Java runtime). This speaks strongly to the de facto standardization of these
gestures.

4.2.3 Tradeoffs

Benefits. Kernel-recognized gestures have several benefits. First, they are easy for the OS to interpret; the OS is
already responsible for collecting user input in its role as the device manager, and it must also track the in-focus
application in its role as display manager. Thus, it is straightforward to add functionality to detect particular inputs
and apply permission changes to the in-focus application. Gesture standardization is also beneficial to users, who
do not need to learn or recall separate gestures for every application. Particularly for expert users, these shortcuts
are likely to be more efficient than interaction with ACGs. Finally, unlike ACGs, kernel-recognized gestures do
not require any dedicated display real estate.

Limitations. A clear drawback of reserved kernel-recognized gestures is the lack of customizability; neither
applications nor users may be permitted to customize these shortcuts, for fear that a malicious app or a careless
user may change the significance of the gestures (e.g., change Ctrl-C to indicate paste). Of course, the kernel can
still forward the relevant inputs to the application, allowing the application to apply its own internal interpretation.
For example, a video game might decide that when the user hits Ctrl-C, it indicates the game character should
run left; the game simply ignores the access it receives to the clipboard (our implementation does not permit
applications to “horde” access tokens; an application can only take advantage of access granted to it or let the
opportunity pass on by). Applications can also implement additional gestures internally; e.g., an application
could still use the sequence “yy” to indicate copy internally. However, the data copied would not be placed on the
system clipboard unless the user employed the appropriate kernel-recognized gesture or corresponding ACG.

Nonetheless, due to these limitations, we restrict our usage of kernel-recognized gestures to the most universal
gestures. Less standardized access control patterns can still be supported via ACGs.

4.3 Access Mechanisms
Once the user has granted an application access to a resource via an ACG or a dedicated gesture, the kernel
must take a system-level action to enable the access. Here the kernel makes a distinction between one-time and
longer-term (session-based or permanent) access. We describe this distinction here.

In the case of longer-term access, the kernel simply updates an access control list (ACL) to grant the ap-
propriate application access to the APIs associated with the relevant resource. For example, when a user grants
an application session-based access to the camera, the kernel updates its ACL to permit the application to di-
rectly access the camera’s APIs (e.g., TakePhoto()). This model aligns with user expectations: after receiving
long-term access, an application should be able to access the relevant APIs at any time until access is revoked.

For one-time access, a user’s expectation is more specific with respect to the moment in time when the per-
mission may be exercised. That is, when the user grants an application access to a resource, he or she expects
that access to happen precisely at that moment. For example, when the user grants an application one-time access
to the camera, the application should not be able to defer its access until thirty seconds later, at which point the
camera may no longer be directed at the scene intended by the user. Thus, updating the ACL for one-time access
is insufficient; it must be associated with a timeout that prevents delayed use of the permission.

Because determining an appropriate timeout is extremely difficult in a non-real-time system with arbitrary
delays, we take another approach. For one-time access, the kernel acts as a mediator of content. At the moment
of the user’s permission-granting action, the kernel pulls content from the associated resource and pushes it to
the appropriate application. We discuss the mechanics of this process further in Section 5 below. Contrary to
the longer-term case, the application does not receive direct access to any APIs associated with the resource, and
any delays during this process (e.g., time required for the camera to turn on) cannot be exploited by the receiving
application.

1That is, we counted different versions as the same application.

9



Type Call Name Description

syscall EmbedACG(location, resource, type, duration) Embeds an ACG in the calling application’s UI
syscall GrantAccess(src, dest, type, duration) Instructs the kernel to permit access from dest to src principal
upcall PullContent(windowId, eventName, eventArgs) Pulls content from a principal based on user intent
upcall PushContent(windowId, eventName, eventArgs) Pushes content to a principal based on user intent
upcall IntermediateEvent(windowId, eventName, eventArgs) Issues a dragenter, dragover, or dragleave to a principal
upcall IsDraggable(windowId, x, y) Determines if the object under the cursor is draggable

Figure 5: User-Driven Access Control System Calls and Upcalls. Note that the GrantAccess() system call may be
issued only by a registered ACG provider and only affects the resource for which it is responsible. The windowId allows a
multi-window application to determine which window should respond to the upcall.

5 Implementation
In this section we describe our implementation of ACGs and kernel-recognized gestures as part of a complete
system that strongly isolates applications.

5.1 Baseline System
We build our new mechanisms into an anonymized baseline system [23] described in this section. This system
runs on Windows and is implemented as a lightweight software layer between the kernel and applications.

Our system isolates applications using Drawbridge [29], a sandboxing technology that uses a “library OS”
approach to virtualize host resources and push complicated Windows kernel-mode components into user space.
Isolated applications interface with the host OS via a narrow API of around 30 calls (compared to over 100,000 in
Windows), which support allocating virtual memory, threading, synchronization, and generic host-mediated I/O.

Our system’s kernel works with the Drawbridge security monitor [29] to enforce an isolation policy that
labels each application with its remote origin, as defined by the same-origin policy [32]. For example, a web
application http://www.cnn.com/us/news/ corresponds to the principal http://www.cnn.com. The
system runs both web and desktop Win32 applications. It extends the Drawbridge API with a dozen more calls
to support features such as embedding content rendered by other principals, downloading HTTP/HTTPS content,
and performing cross-principal messaging.

Isolated applications expose their display to a custom UI shell via remote desktop protocol (RDP) messages.
The kernel manages the position, dimensions, z-index, and transparency of each application’s windows consistent
with our design requirements in Section 3.1.

5.2 Overview
In our implementation, we extend the system described above with about 700 lines of C# code to allow the
kernel to (1) determine user intent via gadgets or gestures, and (2) act on that intent by taking the appropriate
access control actions. Figure 5 summarizes the system calls and application upcalls we implemented to support
user-driven access control. Note that only the kernel may issue upcalls.

When a user indicates an intent to grant an application access to a user-owned resource, he does this either
through interaction with an ACG or with a kernel-recognized gesture. We discuss our implementation of both
methods of intent detection in Section 5.3.

Once the kernel has determined the user’s intent, it must make the appropriate access control changes (Sec-
tion 5.4). The appropriate changes depend on the semantics of the resource and the type of access granted.

5.3 Determining User Intent
We discuss the implementation of gadgets and gestures, which allow users to indicate an intent to grant access.

5.3.1 Supporting ACGs

In our system, access-control gadget providers are implemented as separate applications that provide access-
control and UI logic and expose a set of ACGs.

10



The EmbedACG() system call allows other applications to embed access-control gadgets. Such applications
must specify where, within the application’s portion of the display, the gadget should be displayed, the desired
user-owned resource, and optionally the type of gadget and the duration of access, depending on the set of gadgets
exposed by the provider.

For instance, an application wishing to embed a copy button would make an EmbedACG((x, y), "clip-
board", "copy") call during its UI setup, where “clipboard” is the resource and “copy” is the gadget type.
Similarly, to embed a gadget that enables session-based GPS access, an application would call EmbedACG((x, y),
"gps", "toggle", "session").

Typically, we expect the various application runtimes to expose this call to applications. For example, to make
it easier for web applications to adopt ACGs, we modified the browser runtime to expose this call as a new HTML
tag, so that a web application can include, for example, <acgadget src="clipboard://copy/">.

The kernel binds these embedded regions to the appropriate registered ACG provider. The provider completely
owns the UI stack within this region and can thus implement the gadget appropriately.

Once the ACG provider has determined the proper access control action via interactions between the user
and the ACG, it either implements the action directly, or implements the action via the kernel. The provider
implements the action directly for resource APIs that simply change state and do not require data transfer (e.g.,
muting the speaker). For all other forms of access, the provider triggers the kernel with a GrantAccess()
system call, available only to registered ACG providers.

The GrantAccess() call specifies which principal should receive access (dest) to which other principal
(src), along with the type of access granted, and the duration of the grant. For example, if the user clicks on a
camera ACG in a photo editor to take a picture, the camera ACG provider makes a GrantAccess(cameraId,
photoEditorId, "photo", "one-time") system call. Either the source or destination of a Grant-
Access() call will always be the resource guarded by the ACG provider. The kernel enforces this restriction.
We discuss the kernel’s implementation of GrantAccess() calls below in Section 5.4.

5.3.2 Gesture Implementation

In our implementation, we focused on gestures for the most commonly used shortcuts in desktop systems: short-
cuts accessing the clipboard (via cut, copy, and paste) and the transient clipboard (via drag-and-drop). These
implementation details are representative of what is required for any shortcut (e.g., PrtScn or Ctrl-P).

We modified the kernel to route mouse and keyboard events to gesture detection logic that we added to the
kernel; the events are then relayed to the application via RDP. This gesture detection logic required adding 120
lines of code to the kernel.

The kernel reserves the most common keyboard shortcuts for cut, copy, and paste: Ctrl-X, Ctrl-C, and
Ctrl-V. The first two are effectively translated into the call GrantAccess(inFocusApp, "clipboard",
"put"), while Ctrl-V becomes GrantAccess("clipboard", inFocusApp, "get").

The kernel also implements drag-and-drop detection. It detects a drag by detecting a MouseDown followed by
a MouseMove event on a draggable object (as determined by IsDraggable() calls to the application owning
the object), and it detects the subsequent MouseUp event as a drop. Similar to cut, copy, and paste, a Drag is
translated into the call GrantAccess(inFocusApp, "transient clipboard", "put"), and drop
is translated into GrantAccess("transient clipboard", inFocusApp, "get").

To support existing usage idioms for drag-and-drop, our implementation also dispatches Intermediate-
Event() upcalls during a drag action. This allows our system to dispatch DragOver events while the mouse
moves as well as DragEnter and DragLeave events when the mouse crosses window boundaries, allowing appli-
cations to show visual feedback as appropriate.

5.4 Acting on User Intent
When the kernel receives a GrantAccess() system call, either explicitly from an ACG provider or implicitly
from a gesture, it may do one of two things, depending on the semantics of the type of access granted.

Set Access Control State. If the granted access is session-based or permanent, the kernel sets access con-
trol state indicating that the specified principal may directly access the APIs associated with the specified re-
source. Recall that users may use ACGs to revoke access as well; ACG providers notify the kernel of this via a
GrantAccess(principalId, null, "revoke") call.

11



Figure 6: Discrete Content Transfers. For one-time access grants, the user first (1) indicates an access-grant intent via
an ACG or gesture. The kernel (2) issues a PullContent() upcall to the source application, which identifies and returns
the relevant content. The kernel then (3) issues a PushContent() upcall to the destination application and passes it the
content. In this example of a copy event, the source is a word processer and the destination is the clipboard.

Discrete Content Transfer. Following GrantAccess(), if the granted access is one-time access, the kernel
acts as a mediator for the transfer of one content item from the source to the destination. Here the kernel makes
use of the upcalls in Figure 5. Specifically, the kernel issues a PullContent() call to the source, and then
issues a PushContent() call to the destination (see Figure 6). For example, when the camera ACG provider
grants access to a photo, the kernel issues a PullContent() upcall to the camera device, followed directly by
a PushContent() upcall to the application embedding the ACG. As another example, granting access to the
printer prompts the kernel to first PullContent() from the requesting application and then PushContent()
to the printer. Note PushContent() merely pushes the specified data to the destination; it does not permit the
destination read access to the source.

5.4.1 Application Support

Applications are responsible for handling push and pull upcalls appropriately. On a pull, this means that the appli-
cation uses application-specific knowledge to determine which content is desired (e.g., the currently highlighted
text or the most recently taken photo) and return it to the kernel. On a push, the application must inject the re-
ceived object into the designated destination. We implemented this support for copy-and-paste and drag-and-drop
in the browser renderer shared by web applications, adding about 300 lines of C# code.

6 Evaluation
Below, we evaluate our system on its extensibility, ease of use, security, and performance. We also present targeted
user study data to evaluate a number of design decisions.

6.1 Extensibility
In this subsection, we evaluate the ease of extending our system to include access control support for a new
user-owned resource.

In general, to support a new user-owned resource in the system, we: (1) add resource-specific support (system
APIs and functionality) to the kernel if necessary, and (2) implement a gesture detector or an ACG provider and
its associated gadgets. Here we discuss the implementation effort required to support several new resources; The
first two columns in Figure 7 show an overview.

Search. To understand the complexity of supporting global search of a user’s content across application, we have
implemented a search ACG (Section 4.1.4).

For step 1, we modified the kernel API for the GrantAccess() call to allow the search ACG provider
to specify a wildcard source indicating the set of running applications, rather than a single source (as described
earlier). The kernel iterates through the applications, making PullContent() calls. It passes the resulting

12



Approximate lines of C# code added to:
Kernel ACG Provider Application

Global Search 170 50 10
Copy-and-Paste n/a 70 70
Drag-and-Drop 70 35 200
Camera Access n/a 30 20

Figure 7: Evaluation of Implementation Effort. For global search, ACG support does not include an algorithm to rank
search results; it simply displays them. Similarly, application support for search refers only to the compilation and sending
of search results, not full application-specific search. For the rest, application support is added to the runtime (a browser
renderer) and simply exposes the relevant functionality to the web application.

handles to content views from the applications back to the ACG provider via a PushContent() call. Adding
this kernel support required 170 lines of C# code.

For step 2, implementing the search provider and its gadget was also simple: the gadget contains a text box
along with a search button, requiring about 30 lines of code. The user’s click on the search button prompts the
search ACG provider to issue the appropriate GrantAccess() call to the kernel. In response to the upcall,
queried applications in our prototype each return a set of content views along with relevance information. The
kernel passes these to the search ACG, which reorders the results appropriately and displays them by embedding
the content views. This took about 20 lines of code, since we only implement the access-control actions, not the
algorithm to appropriately rank the results. Existing desktop search algorithms would be suitable here, though
modifications may be necessary to deal with applications that return bad rankings.

Clipboard and Transient Clipboard. Copy-and-paste requires ACG provider support, but it did not require any
additional kernel support. Our implementation of the clipboard ACG provider required about 70 lines of code to
invoke GrantAccess() and respond appropriately to PullContent() and PushContent() calls.

Support specific to drag-and-drop required about 70 lines of kernel code to provide the appropriate Inter-
mediateEvent() calls. Since drag-and-drop is fundamentally only a gesture, the drag-and-drop ACG provider
exposes no gadgets, it merely mediates access to the transient clipboard.

Camera. To assess the ease of enabling access to new physical devices, we added support for cameras. We
leveraged existing system API support for the camera, so no kernel modifications were needed. The camera ACG
provider, which exposes a gadget that allows a user to take a photo and immediately share this photo with the
application embedding the gadget, required about 30 lines of code. When the user clicks on the gadget, the ACG
provider must merely (1) issue a call to the camera to take a photo, and (2) issue a GrantAccess() call to the
kernel to trigger a transfer of the photo to the receiving application.

6.2 Ease of Use
To evaluate the effort required to add new access-control functionality to applications, we studied the addition of
several features to web applications. In many cases, we were able to provide most of the necessary support in
the runtime (in this case a wrapper for the rendering engine of an existing commercial browser) shared by web
applications.

The “Application” column in Figure 7 summarizes the implementation effort required to implement generic
support in the runtime for search, basic copy-and-paste, drag-and-drop, and camera access. Note that the runtime
simply exposes the relevant content to the underlying HTML; we do not evaluate the effort required to build a
web application that makes use of this content in a meaningful way.

Rich File Sharing Case Study. To demonstrate the power of combining user-driven access control with exist-
ing web applications, we also implemented rich drag-and-drop file sharing across web applications. By adding
proper support in the runtime, we were able to enable drag-and-drop file content across websites without any
modifications to these websites.

More precisely, our implementation takes advantage of new features offered by HTML5 that dovetail nicely
with our user-driven access control techniques. In particular, the HTML5 standard recently introduced support for
a drag-and-drop API and a File API [40]. These new features allow websites to support the dragging and dropping

13



% We Eliminate by Design
Class of Vulnerability Example Chrome Bugs Firefox Bugs

User data leakage getData() can retrieve fully qualified path during a file drag 90% (19 of 21) 100% (18 of 18)
Local resource DoS Website can download unlimited content to user’s file system 100% (10 of 10) 100% (1 of 1)
Clickjacking Security-relevant prompts exploitable via timing attacks 100% (4 of 4) 100% (1 of 1)
User spoofing Forced mouse drag 100% (3 of 3) 100% (4 of 4)
Cross-app exploits Script tags included in copied and pasted content 0% (0 of 6) 50% (1 of 2)

Total 82% (36 of 44) 96% (25 of 26)

Figure 8: Relevant browser vulnerabilities. We categorize Chrome [6] and Firefox [25] vulnerabilities that affect user-
owned resources; we show the percentage of vulnerabilities that user-driven access control eliminates by design.

of files from a user’s local file system to the web page (enabling drag-and-drop photo uploaders like DropMocks2).
However, these mechanisms do not support the dragging and dropping of files across web applications (e.g.,
Facebook to DropMocks). In our system, we easily enabled this feature across web applications that support
drag-and-drop with File API interaction.

Our wrapper interacts with the browser runtime to properly handle the PullContent() and PushContent()
upcalls. Specifically, the wrapper:

1. on drag of an image, encapsulates the image in a file object and returns this file object to the PullContent()
upcall.

2. on any drop, triggers the underlying HTML element’s ondrop() handler with the content provided via
the PushContent() upcall.

We note here that there are other ways in which web applications could take advantage of our system. For
instance, rather than transferring large content on the client side via the File API, a source application might
simply transfer an OAuth token [27] to the sink application. This would allow the sink application to access the
specified data directly via a back-end API, without disclosing the user’s credentials for the source application.

6.3 Security
To assess the security benefit of user-driven access control techniques, we evaluate their effectiveness against
attacks on user-owned resources in browsers today.

We assembled a list of 631 publicly-known security vulnerabilities in recent versions of Chrome (2008 to
2011) [6] and Firefox (version 2.0-3.6) [25]. We classify these vulnerabilities and find that memory errors, input
validation errors, same-origin-policy violations, and other sandbox bypasses account for 61% of vulnerabilities
in Chrome and 71% in Firefox. Previous work on isolating web site principals [13, 42] targets this class of
vulnerabilities.

Our focus is on the remaining vulnerabilities, which represent the future vulnerabilities that cross-principal
isolation will not address. Of those remaining, the dominant category (with 30% in Chrome and 35% in Fire-
fox) pertains to access control for user-owned resources among applications. We further sub-categorize these
remaining vulnerabilities and analyze which ones can be eliminated by our user-driven access control. Figure 8
summarizes our results.

User Data Leakage. This class of vulnerability either leads to unauthorized access to locally stored user data
(e.g., unrestricted file system privileges) or leakage of a user’s data across web applications (e.g., focus stealing
to misdirect sensitive input). We identified 21 such vulnerabilities in Chrome and 18 in Firefox. With user-driven
access control, most of these data leakage vulnerabilities can be eliminated, as only genuine user interaction with
ACGs or kernel-recognized gestures grants access.

Nine of these vulnerabilities in Chrome are related to autocomplete functionality. While the use of an ACG
for the autocomplete datastore can eliminate all but two of these bugs, the design of ACG support for autocom-
plete merits further consideration. In particular, it requires applications either to opt in to autocomplete (losing
the application-agnostic benefits of autocomplete in browsers today) or for every textbox to be an embedded au-
tocomplete ACG. The two vulnerabilities that we do not address by design are errors that could be duplicated in
an ACG provider’s implementation (e.g., autocompleting credit card information on a non-HTTPS page).

2http://www.dropmocks.com

14



Local Resource DoS. Eleven vulnerabilities (ten in Chrome and one in Firefox) allow malicious applications to
perform denial-of-service attacks on a user’s resources. For example, an attacker might download content without
the user’s consent. User-driven access control eliminates the attacker’s ability to access user resources without
user consent. Even with that consent, one-time access control gadgets and gestures grant only one access.

Clickjacking. We identified four clickjacking vulnerabilities in Chrome and one in Firefox. As discussed in
Sections 4.1.2 and 4.1.3, both display- and timing-based clickjacking attacks are eliminated by the fact that each
ACG’s UI stack is completely controlled by the kernel and the ACG provider. In particular, our system disallows
transparent ACGs and enforces a delay on the activation of ACGs when they appear.

User Spoofing. A fundamental property of user-driven access control is that user actions granting access cannot be
spoofed. This property eliminates user spoofing vulnerabilities in which malicious applications can gain access by,
for example, issuing clicks or forcing drag-and-drop actions. We identified three such vulnerabilities in Chrome
and four in Firefox.

Cross-Application Exploits. We categorized a number of vulnerabilities as cross-application exploits, in which
an attacker uses a user’s transfer of content on the client side as an avenue for attacking another application (e.g.,
copying and pasting into vulnerable applications allows cross-site scripting). As described in our threat model, we
consider the hardening of applications to malicious input to be an orthogonal problem. However, we do eliminate
one such bug in Firefox: this bug involves a malicious search plugin a user may be tricked into installing, an attack
eliminated by the search ACG provider in our design.

6.4 Performance
User-driven access control performance is fundamentally subject to the user’s perception, as all support for grant-
ing access to user-owned resources begins and/or terminates with a UI event. We focus on investigating the
performance of drag-and-drop for two reasons: (1) its dataflow is similar or identical to the dataflow of all one-
time access-control abstractions and thus its performance will be indicative, and (2) the user’s perception of the
usability of a system is particularly sensitive to performance degradation in drag-and-drop event handling, as it is
a continuous, synchronous action.

In particular, we evaluate the performance of intermediate drag-and-drop events. These events (DragEnter,
DragOver, DragLeave) are fired on every mouse move at some granularity while the user is dragging an object.
To evaluate the performance of our system enhanced with user-driven access control, we compared to the perfor-
mance of Windows/COM for the same events. We ran all measurements on a computer with a dual-proc 3GHz
Xeon CPU with 12GB RAM, running 64-bit Windows 7.

In both systems, we measured the time it took from the registration of the initial mouse event by the kernel
to the triggering of the relevant intermediate drag event handler in the application. We found the difference to be
negligible. In Windows, this process took 0.45 ms, averaged over 100 samples (standard deviation 0.11 ms); in our
system, it took 0.47 ms on average (standard deviation 0.22 ms). From personal experience using the system, we
can also confirm qualitatively that the user experience of our prototype system is not impacted by any slowdowns.

6.5 User Study
To understand user mental models of cross-application access control and to evaluate a number of design de-
cisions, we performed an online user survey (including questions and tasks) with 139 participants of varied
backgrounds. Participants were recruited with the help of Microsoft’s user research lab [22]. Self-reported demo-
graphic data indicates we had 111 males and 28 females, ages 18-72, with a wide variety of occupations, including
custodian, teacher, and airline pilot. We present results from this study here, beginning with a general discussion
of user mental models of desktop sharing abstractions, before discussing the design and results of three tasks.

Mental Models. We found that most users believe that copy-and-paste already has the security properties that
we enable with user-driven access control. In particular, over 40% (a plurality) of users believe, wrongly, that
applications can only access the global clipboard when the user pastes (see Figure 9). User-driven access control
would match this mental model.

Participants had no consistent mental model of the security of drag-and-drop. The responses to the question
about whether an application over which an item is dragged can access the item are statistically indistinguishable

15



Response Option Responses
“A program will always 11.51%
see the text I’ve copied.”
“A program could see the text, but probably 23.74%
wouldn’t look unless I hit paste.” (correct)
“A program can only see the text 40.29%
if I pasted it into the program.”
“Other programs can never see 6.47%
the text that I’ve copied.”
“I don’t know.” 17.99%

Figure 9: Responses to a multiple choice question asking when applications can access the clipboard. These results are
statistically significant compared to an even distribution of responses (χ2(N = 139) = 47.5827, p < 0.0001).

Figure 10: Percentages of participant trials succeeded or failed during cursor/button attack scenarios. Participants
were asked to copy and paste from one application to another; the categories on the x-axis indicate whether the task was
to copy from application 1 to application 2 or vice versa. Application 2’s buttons randomly showed the wrong cursor text;
the x-axis categories indicate whether copy, paste, or both (“attack”) buttons were wrong. Only scenarios in which attacks
actually affected the required task are shown (e.g., a copy attack when not asked to copy from a malicious application would
not have been encountered by participants).

(χ2(N = 139) = 1.4820, p = 0.4766) from an even distribution across the three possible responses (“true”,
“false”, “don’t know”).

Trusted Cursor, Untrusted Buttons. In one of the tasks in our user study, we evaluated a design from related
work. The EROS Trusted Window System (EWS) [36] supports application-customized copy-and-paste buttons
via authentic transparent windows. While EROS controls the cursor when the user hovers over such a window,
the application controls the visual appearance of the button. This allows for full application customizability at
the expense of security guarantees: an application could register an area of the screen as a paste button but draw
anything it wishes. This type of attack is impossible in our system.

To evaluate the importance of preventing such an attack, we presented our participants with a copy-and-paste
task in which the cursor was trustworthy but the buttons were not. We found that most users (61%) reported not
even noticing the additional information presented by the trusted cursor. Of those that noticed the cursor text,
only 44% reported noticing the occasional inconsistencies between the cursor text and the button text. During
the trials, users by and large believed the button text, not the cursor, failing in 87% of attack trials (see Figure 10
for more detail). Further, introducing the cursor text in the task instructions for half of the participants did not
significantly affect either noticing the cursor (χ2(N = 130) = 2.119, p = 0.1455) or success rate (F (1, 1) =
0.0063, p = 0.9370). Thus, it is imperative that the entire UI stack of access-granting features be authentic, as is
the case with our ACGs.

Multi-Clipboard. In another task, we explored the participants’ use of and preference for a multi-clipboard. In a

16



Figure 11: Responses to a Likert scale question about preference of the multi-clipboard to a normal clipboard. These
results are statistically significant compared to an even distribution of responses (χ2(N = 139) = 20.2446, p = 0.0004).

multi-clipboard, users can copy multiple items in a row without pasting in between, and then find all of them in
the clipboard’s multi-object history. This allows users to, for instance, copy multiple items in one application and
then paste them one by one into another application, needing to switch windows between the two only once. Prior
work [37] has suggested such a clipboard based on users’ copy-and-paste habits, and Microsoft Office supports a
multi-object clipboard, as do various custom clipboard extensions (e.g., [8]). The goal of this task was to observe
how (or if) participants responded to attack scenarios (errors in copied text or additional copied text appearing).

In general, we found that people liked the multi-clipboard. Figure 11 shows a distribution of participants’
preference indication of the multi-clipboard over a normal clipboard. We also coded participant responses to a
free-form question in the feedback for this task and found that 22% of participants explicitly indicated that the
multi-clipboard would be useful. For example, one participant said: I use copy and paste a lot in my work, so this
function is fantastic.

The multi-clipboard appeared to aid users in avoiding error or attacks. In the attack scenarios, over 56% of
participants still succeeded at the task (by contrast, over 96% succeeded at non-attack trials). This means that
they noticed the false or additional word and either did not paste it or manually edited it after pasting. Thus, UI/X
techniques like the multi-clipboard and the drag visuals that we describe in the next paragraphs may supplement
user-driven access control to aid users in forming correct mental models and avoiding attacks.

Drag Visuals. In the third task, we studied the effectiveness of visual cues during a drag-and-drop activity on user
awareness of attack scenarios. In current web browsers, little information is provided when a user drags an item.
The cursor changes to a generic “cannot drop here” cursor until the mouse is over an area in which the item can be
dropped, at which point it changes to a generic “can drop here” cursor. The lack of information about which item
is being dragged – and from what source – enables an opportunity for data theft. We devised a task in which the
participant was asked to drag ten balls and drop them into a seal’s nose; in one trial (randomized per participant),
the drag icon showed a Gmail envelope icon instead of a ball.

A large majority (71%) of participants reported noticing the inconsistency. However, most did not change their
behavior, dropping the object on the seal’s nose anyway. Only 14.19% of all participants succeeded under attack
conditions. Of the participants that reported noticing inconsistences, 13.76% succeeded; (reportedly) noticing the
inconsistency did not have a significant effect on success (χ2(N = 137) = 0.241, p = 0.6235).

These results indicate that the drag visual is a promising technique to help users avoid error and attack, as they
do notice inconsistencies. However, users would need to be trained on the meaning of the visual, as most users
who noticed the inconsistency disregarded it.

7 Related Work
Philosophically, our user-driven access control aligns with Yee’s proposals to align usability and security in the
context of capability systems [45]. Below, we compare our techniques with other systems.

17



7.1 User-Owned Resource Access Control
Desktops. Desktop operating systems provide many options for accessing user-owned resources and data. Ex-
amples include a global file system, cross-application objects sharing via OLE and COM in Windows, or the
global clipboard in the X Window System. These mechanisms support many application-agnostic access control
abstractions but are terribly insecure: all user-owned resources are accessible to any application at almost any
time. By contrast, we provide strong security properties with nearly the same flexibility as desktop systems.

Commercial Browsers. Commercial browsers, including IE, Firefox, and Chrome, isolate the user’s local ma-
chine from websites, e.g., by restricting access to the file system and to the clipboard [19]. While this model
helps prevent attacks on user-owned resources, it restricts website functionality. Recent specifications for access
to user-owned resources [39, 41] note only that permission-granting should be tied to explicit user actions but do
not address how these should be mapped to system-level access control decisions.

Browser Plugins. Browser restrictions have led web developers to use browser plugins and extensions to access
user-owned resources, thereby violating least privilege. For instance, web developers have created copy and paste
buttons by overlaying transparent Flash elements and essentially clickjacking [26]. A recent version of Flash
introduced a user-initiated action requirement [1], restricting paste to the Ctrl-V shortcut and requiring a click
or keystroke for other permissions. Silverlight has a similar model [20]. These requirements do not accurately
capture user intent, as users often perform clicks or keystrokes unrelated to the access granted.

Smartphones. As discussed in Section 2, smartphone OSes like iOS [3] and Android [2] allow users to grant
access via prompts or manifests.

Experimental Browsers and Browser OSes. Research systems, including experimental browsers [7, 13, 42] and
browser operating systems [38, 43], focus on strongly isolating web applications but do not address the problem
of intuitive, user-driven access control. The authors of Tahoma point out the need for user-driven access control,
but do not further explore how users grant access nor the semantics of such accesses.

7.2 Trusted Window Systems
EROS/EWS and Qubes. The EROS Trusted Window System (EWS) [36] and Qubes OS [33] examine issues
similar to those considered in this work. Like Flash, both EWS and Qubes use a specific gesture to indicate
copy and paste. EWS also supports drag-and-drop. We generalize these notions into generic support for kernel-
recognized gestures. Additionally, EWS provides a special kind of transparent window that allows applications
to include customized copy and paste buttons. We found in our evaluation that the transparent window solution
enables attacks that our ACG design eliminates.

NitPicker. NitPicker [12] is another trusted window system; it supports only drag-and-drop. The authors claim
that this is because copy-and-paste is a problem independent of a trusted GUI and could be supported with a
trusted clipboard component with which applications can communicate. Of course, this does not address how a
user expresses their intent to copy and paste, nor does it consider access to other user-owned resources.

7.3 Multi-Level Security and Information Flow Control
Multi-level security systems like SELinux [34] classify information and users into sensitivity levels to support
mandatory access control security policies. Information flow control techniques [17, 46] allow applications or
users to express information flow policies explicitly. These policies are enforced by the operating system or
language runtime.

Unlike these approaches, user-driven access control does not require the specification of explicit policies;
access control decisions are inferred from user actions during natural interaction with the system and applications.

8 Conclusion
In this paper we introduced user-driven access control, whereby the operating system infers a user’s intent to grant
an application access to his or her resources. This intent is inferred from the user’s natural interaction with the

18



system and applications. To support user-driven access control in modern operating systems, we introduced two
OS techniques, access control gadgets and kernel-recognized gestures. These techniques are general and readily
support user-driven access control of all user-owned resources, including privacy- and cost-sensitive devices,
settings, and content. Systems can thereby support a broad range of access-control metaphors, including drag-
and-drop, copy-and-paste, content picking, and global search. Our implementation and evaluation indicate that
by accurately capturing user intent, user-driven access control adds the functionality of the traditional desktop to
the security of isolated application systems.

9 Acknowledgements
I sincerely thank my collaborators for all of their help and hard work on this project. I also thank Crispin Cowan,
Stuart Schechter, Steve Gribble, and the UW CSE systems seminar for their valuable feedback on this work.
Thanks to Greg Akselrod, Roxana Geambasu, and Dan Halperin for their feedback on earlier drafts. I thank
Michael Berg and Microsoft User Research, Andrew Begel, James Fogarty, Batya Friedman, and my CSE 510
(HCI) classmates for their help with the user study; thanks to the study participants for their participation. Finally,
thanks to Cornel Lupu and Vince Orgovan for their help with obtaining Windows application popularity data.

This material is based upon work supported by the National Science Foundation Graduate Research Fellow-
ship under Grant No. DGE-0718124. This work was done in part while employed by Collabera as a contractor
for Microsoft Research.

References
[1] ADOBE. User-initiated action requirements in Flash Player 10, October 2008. http://www.adobe.com/devnet/

flashplayer/articles/fplayer10_uia_requirements.html.

[2] ANDROID OS. http://www.android.com/.

[3] APPLE. iOS4, 2011. http://www.apple.com/iphone/.

[4] BALLANO, M. Android Threats Getting Steamy. Symantec Official Blog, Febuary 2011. http://www.symantec.
com/connect/blogs/android-threats-getting-steamy.

[5] BARTH, A., FELT, A. P., SAXENA, P., AND BOODMAN, A. Protecting Browsers from Extension Vulnerabilities. In
Network and Distributed System Security Symposium (NDSS) (Feb. 2010).

[6] CHROMIUM. Security Issues, February 2011. https://code.google.com/p/chromium/issues/list?q=
label:Security.

[7] COX, R. S., GRIBBLE, S. D., LEVY, H. M., AND HANSEN, J. G. A Safety-Oriented Platform for Web Applications.
In IEEE Symposium on Security and Privacy (2006).

[8] DITTO CLIPBOARD MANAGER. http://ditto-cp.sourceforge.net/.

[9] DOWDELL, JOHN. Clipboard pollution, August 2008. http://blogs.adobe.com/jd/2008/08/clipboard_
pollution.html.

[10] FACEBOOK. Apps on Facebook.com, 2011. http://developers.facebook.com/docs/guides/.

[11] FELT, A. P., GREENWOOD, K., AND WAGNER, D. The effectiveness of application permissions. In To Appear in
USENIX Conference on Web Application Development (June 2011).

[12] FESKE, N., AND HELMUTH, C. A Nitpicker’s guide to a minimal-complexity secure GUI. In 21st Annual Computer
Security Applications Conference (2005).

[13] GRIER, C., TANG, S., AND KING, S. T. Secure Web Browsing with the OP Web Browser. In IEEE Symposium on
Security and Privacy (2008).

[14] HARRIS, J. No Distaste for Paste (Why the UI, Part 7), April 2006. http://blogs.msdn.com/b/jensenh/
archive/2006/04/07/570798.aspx.

19



[15] HOWELL, J., AND SCHECHTER, S. What You See Is What They Get: Protecting Users from Unwanted Use of Micro-
phones, Camera, and Other Sensors. In Web 2.0 Security and Privacy Workshop (2010).

[16] KARGER, P. A., ZURKO, M. E., BONIN, D. W., MASON, A. H., AND KAHN, C. E. A retrospective on the VAX
VMM security kernel. IEEE Transactions on Software Engineering 17, 11 (Nov. 1991), 1147–1165.

[17] KROHN, M., YIP, A., BRODSKY, M., CLIFFER, N., KAASHOEK, M. F., KOHLER, E., AND MORRIS, R. Information
Flow Control for Standard OS Abstractions. In 21st Symposium of Operating Systems Principles (2007).

[18] MACKENZIE, I. S. Fitts’ Law as a Research and Design Tool in Human-Computer Interaction. Human-Computer
Interaction (HCI) 7(1) (1992), 91–139.

[19] MICROSOFT. How to Prevent Web Sites From Obtaining Access to the Contents of Your Windows Clipboard, March
2007. http://support.microsoft.com/kb/224993.

[20] MICROSOFT. Silverlight Clipboard Class, 2010. http://msdn.microsoft.com/en-us/library/system.
windows.clipboard%28v=VS.95%29.aspx.

[21] MICROSOFT. What is User Account Control?, 2011. http://windows.microsoft.com/en-US/
windows-vista/What-is-User-Account-Control.

[22] MICROSOFT USER RESEARCH. http://www.microsoft.com/usability/.

[23] MOSHCHUK, A., WANG, H. J., AND LIU, Y. Content-Based Principal Model: Rethinking Isolation in Modern Client
Systems. In Submission to the 18th ACM Symposium on Operating Systems Principles (2011).

[24] MOTIEE, S., HAWKEY, K., AND BEZNOSOV, K. Do Windows Users Follow the Principle of Least Privilege?: Investi-
gating User Account Control Practices. In 6th Symposium on Usable Privacy and Security (2010).

[25] MOZILLA FOUNDATION. Known Vulnerabilities in Mozilla Products, February 2011. http://www.mozilla.
org/security/known-vulnerabilities/.

[26] NOVAK, B. Accessing the System Clipboard with JavaScript: A Holy Grail?, July 2009. http://brooknovak.
wordpress.com/2009/07/28/accessing-the-system-clipboard-with-javascript/.

[27] OAUTH. http://oauth.net.

[28] PETRONI, JR., N. L., AND HICKS, M. Automated detection of persistent kernel control-flow attacks. In ACM Confer-
ence on Computer and Communications Security (CCS) (2007).

[29] PORTER, D. E., BOYD-WICKIZER, S., HOWELL, J., OLINSKY, R., AND HUNT, G. C. Rethinking the Library OS
from the Top Down. In ACM ASPLOS Conference (2011).

[30] REEDER, R., KELLEY, P., MCDONALD, A., AND CRANOR, L. A User Study of the Expandable Grid Applied to P3P
Privacy Policy Visualization. In ACM Workshop on Privacy in the Electronic Society (WPES) (2008).

[31] REIS, C., AND GRIBBLE, S. D. Isolating Web Programs in Modern Browser Architectures. In ACM EuroSys Conference
(2009).

[32] RUDERMAN, J. The Same Origin Policy, 2011. http://www.mozilla.org/projects/security/
components/same-origin.html.

[33] RUTKOWSKA, J., AND WOJTCZUK, R. Qubes OS. Invisible Things Lab. http://qubes-os.org.

[34] SERVICE, N. C. S. Security-Enhanced Linux, January 2009. http://www.nsa.gov/research/selinux/
index.shtml.

[35] SESHADRI, A., LUK, M., QU, N., AND PERRIG, A. SecVisor: A tiny hypervisor to provide lifetime kernel code
integrity for commodity OSes. In ACM SOSP Conference (2007).

[36] SHAPIRO, J. S., VANDERBURGH, J., NORTHUP, E., AND CHIZMADIA, D. Design of the EROS Trusted Window
System. In 13th USENIX Security Symposium (2004).

[37] STOLEE, K. T., ELBAUM, S., AND ROTHERMEL, G. Revealing the Copy and Paste Habits of End Users. IEEE Visual
Languages and Human-Centric Computing (2009).

20



[38] TANG, S., MAI, H., AND KING, S. T. Trust and Protection in the Illinois Browser Operating System. In 9th Symposium
on Operating Systems Design and Implementation (2010).

[39] W3C. Device APIs and Policy Working Group, 2011. http://www.w3.org/2009/dap/.

[40] W3C. HTML5: File API, 2011. http://www.w3.org/TR/FileAPI/.

[41] W3C. Web Applications 1.0: The Device Element, 2011. http://dev.w3.org/html5/html-device.

[42] WANG, H. J., GRIER, C., MOSHCHUK, A., KING, S. T., CHOUDHURY, P., AND VENTER, H. The Multi-Principal OS
Construction of the Gazelle Web Browser. In 18th USENIX Security Symposium (2009).

[43] WANG, H. J., MOSHCHUK, A., AND BUSH, A. Convergence of Desktop and Web Applications on a Multi-Service OS.
In 4th USENIX Hot Topics in Security (2009).

[44] XIONG, X., TIAN, D., AND LIU, P. Practical Protection of Kernel Integrity for Commodity OS from Untrusted Exten-
sions. In Network and Distributed System Security Symposium (2011).

[45] YEE, K.-P. Aligning Security and Usability. IEEE Security and Privacy 2(5) (September 2004), 48–55.

[46] ZELDOVICH, N., BOYD-WICKIZER, S., KOHLER, E., AND MAZIÈRES, D. Making information flow explicit in HiStar.
In USENIX OSDI Conference (2006).

21


