
1This paper appears at the IEEE Workshop on the Internet of Safe Things (SafeThings) 2019.

Analysis of the Susceptibility of Smart Home
Programming Interfaces to End User Error

Mitali Palekar, Earlence Fernandes, Franziska Roesner

Paul G. Allen School of Computer Science & Engineering
University of Washington

Abstract—Trigger-action platforms enable end-users to
program their smart homes using simple conditional rules
of the form: if condition then action. Although these rules
are easy to program, subtleties in their interpretation can
cause users to make errors that have consequences ranging
from incorrect and undesired functionality to security and
privacy violations. Based on prior work, we enumerate a
set of nine classes of errors that users can make, and we
empirically study the relationship between these classes
and the interface design of eight commercially available
trigger-action platforms. Particularly, we examine whether
each interface prevents (e.g., via good design) or allows
each class of error. Based on this analysis, we develop
a framework to classify errors and extract insights that
lay a foundation for the design of future trigger-action
programming interfaces where certain classes of errors
can be mitigated by technical means or by alerting the
user of the possibility of an error. For instance, we identify
that an analysis of a dataset of functionally-similar trigger-
action rules could be used to predict whether certain types
of error patterns are about to occur.

I. INTRODUCTION

Smart home platforms and devices, such as Samsung
SmartThings, Amazon Echo, Google Home, Phillips
Hue lights, Nest thermostats and cameras, and many
others, are being increasingly deployed in the homes
of end users. One value proposition of smart homes
is their ability to be programmed and automated by
their users—for example, users can create rules to
turn their lights on when someone arrives at home,
or to send themselves a notification when a door is
opened. This end-user programming is typically done
via a trigger-action framework that enables users to
program if-then rules, e.g., “if the door opens, then
send me a notification”. This programming paradigm
appears both in native smart home apps (e.g., Samsung’s
SmartThings app) as well as third-party services that can
be integrated with a user’s smart devices (e.g., If-This-
Then-That, or SmartRules).

Unfortunately, prior work (e.g., [5, 2, 6, 8]) has found
that end users may make errors when they program
trigger-action rules. These errors may stem from simply
forgetting to program part of the intended behavior (e.g.,
programming a rule to turn on the lights but no rule to
turn them back off) or from more fundamental misun-
derstandings of the trigger-action framework (attempt-
ing to program rules whose behavior is not logically

well-defined). The impact of these errors can range
from mere annoyance to serious security or privacy
concerns—for example, incorrectly unlocked doors, fire
hazards, or privacy risks due to smart cameras.

Moreover, debugging these kinds of errors after the
fact can be challenging for users. A user may not realize
anything is amiss until some time after a rule has been
programmed and the user observes something strange
happening in their physical home (e.g., the lights turning
off at the wrong time). Depending on the number and
complexity of the user’s setup and automations, it may
be non-trivial to track down exactly what went wrong.
Ideally, instead, a user’s trigger-action programming
errors should be prevented at programming time, by the
trigger-action programming platform itself.

In this work, we thus ask: do current trigger-action
platforms prevent users from making these types of
errors? We empirically study eight commercially avail-
able trigger-action platforms that support smart home
integrations. For each platform, we investigate whether
its programming interface allows users to make the
types of errors we collected from prior work, and how
it prevents errors (if any).

What we find suggests room for improvement. For
most of the platforms we analyze, we find that they
either disallow errors by lacking the features that would
make the error possible in the first place (e.g., the ability
to have trigger conjunctions, i.e., “if x and y, then”) or
they disallow errors that do not make logical sense. (For
example, Stringify and SmartRules both prevent users
from creating rules such as if the light is on and the
door is open, do something. It is unclear when this rule
should run, as both triggers refer to continuous states,
the light being on and the door being open.) By contrast,
interfaces currently do nothing to prevent errors that fall
into a grey area: they are logically sensible but may not
have been intended by the user.

We then classify these errors that are currently al-
lowed by programming interfaces based on whether
they can be automatically detected and/or prevented by
trigger-action platforms. We observe that while some
errors can be automatically detected and prevented
based on logic alone—such as those prevented by
Stringify and SmartRules—others rely fundamentally
on the user’s intention. For example, a rule that poses
a potential privacy violation by posting photos to Face-
book [6] is only problematic if it does not match the



2

user’s intention; likewise for a rule where the user forgot
to include one of two intended trigger conditions (e.g.,
“if the light turns on and it after 6pm” versus simply “if
the light turns on”). We propose strategies that trigger-
action programming interfaces and researchers should
explore in future work to help users avoid these types of
errors. For example, by leveraging a corpus of common
rules from many users, a platform may be able to detect
and suggest possible omissions in a user’s ruleset.

In summary, our main contributions are as follows:
1) We consolidate (based on prior work) a set of

errors that end users of smart home trigger-action
platforms may make.

2) We empirically evaluate the end-user program-
ming interfaces of eight commercially available
smart home trigger-action platforms with respect
to whether they allow users to make these errors.

3) We classify the errors according to whether they
could be automatically detected and/or prevented
by the platform.

4) We make concrete recommendations for both the
design of end user trigger-action programming
interfaces as well as for future research to help
reduce all types of end user errors.

II. RELATED WORK

Various aspects of trigger-action programming have
been studied. Early work by Ur et al. character-
ized 224,590 user-created trigger-action rules from the
IFTTT platform, discussing statistics like the number of
times the rules have been shared and the types of online
services being used [7]. A large body of work has built
upon this to understand the errors end-users may make
while programming trigger-action rules [2, 6, 5, 8].
Huang et al. discuss how trigger conjunctions can lead
to subtle logic errors [2]. Surbatovich et al. discuss
rules that create privacy or integrity violations as well as
unexpected interactions between user-created rules [6];
Yarosh et al. discuss interactions between rules [8].
Nandi et al. discuss errors resulting from users program-
ming too few trigger conditions [5].

Our work systematizes these prior studies and
presents a characterization of the types of errors. Fur-
thermore, these prior works analyze the errors either in
the context of hypothetical trigger-action platforms or
systems intended for technically skilled programmers
(e.g., OpenHab). Thus, it is unclear whether such errors
are likely to happen in the context of commercially
available platforms for non-technical end users. Our
work fills this gap, and reports on an empirical study
of eight commercial programming interfaces about
whether such programming errors are prevented, or
can occur. In concurrent work, Brackenbury et al. also
identify similar classes of trigger-action programming
bugs, and investigate how users reason about them (but
do not evaluate commercially available platforms) [1].

Prior work has proposed automated platform-level
mechanisms to detect and prevent certain classes of

errors [4, 6, 5]. For example, Surbatovich et al. propose
information flow analyses to detect when a privacy
violation might occur [6], and Nandi et al. propose a
static analysis tool to vet rules for missing triggers under
certain conditions [5]. Expanding on these possible
prevention strategies, our work takes a wide view of the
types of errors that can occur, observing that identifying
and correcting some errors requires understanding the
user’s intent in creating a rule. We propose additional
mitigation strategies for end-user errors in Section VI-C.

III. BACKGROUND

Trigger-action programming involves simple rules of
the form: if condition then action. For example, “if
the door is opened, then send me a notification.” The
simplicity and utility of trigger-action programming
makes it common in home automation. Trigger-action
programming platforms often include:
Event triggers are instantaneous signals [2] such as
the door is opened. The event occurs at the moment
in time when the door transitions from being closed to
being opened.
State triggers are boolean conditions that evaluate to
a specific value for a period of time [2]. For example,
the door is open can be true for any amount of time. In
this case, the state trigger is true for the period of time
the door is open.
Actions are operations that are initiated by the trigger-
action platform when a rule is executed. For example,
unlock the door or send a text message.
Trigger conjunctions are the boolean “and” of two or
more triggers in an unspecified order. For example, the
light is on AND a person is in the room.
Action conjunctions are the boolean “and” of two or
more actions in an unspecified order. For example, turn
the light on AND open the door.
Conditions on triggers allow filtering whether an ac-
tion is invoked based on the value of a trigger attribute.
For example, “if I receive an email AND the subject
contains URGENT” contains a condition on the trigger.
Do While is a feature where actions are executed until a
certain condition is not met. For example, “If no one is
home and it is past 9pm, turn the sprinklers on every 30
minutes until someone comes home or it is past 6am.”
Integration with smart devices such as smart lights
and locks via SmartThings and/or non-smart home
devices such as cloud services (e.g., GMail) might be
enabled in current trigger-action platforms. In this work,
we primarily consider interfaces that are intended for
use by end users, especially in smart home contexts
(rather than business logic trigger-action use cases).

IV. ERROR SYSTEMATIZATION

We consolidate a list of errors (i.e., situations where
the user’s intended behavior and platform’s actual rule
execution are different) based on prior work. We focus
only on errors that can me made by end users rather
than platform-level bugs or vulnerabilities.



3

Lack of action reversal occurs when a user programs
only one half of an intended rule and forgets the other
half [2]. For example, a user might program a rule to
turn the lights on at 6pm, but forget to program a rule
to turn the lights off at 12am. This type of error can
only occur when the action causes a change that is true
for a sustained period of time and needs to be reversed
at the end of that period of time (a light once turned on
will remain on). By contrast, an action such as add an
entry to the database has no associated “off” state.
Feature interaction occurs when multiple rules interact
with each other, creating a logical conflict in deter-
mining the resulting state [8]. For example, suppose a
home system includes a rule to lock all doors at night
and another rule to unlock the door if someone comes
home [8]. In this case, after someone has arrived home
at night, there may be uncertainty about whether the
door would be locked or unlocked afterwards due to a
logical conflict in the rules.
Feature chaining occurs when the action of one rule
sets off the trigger for another rule. There are two
types of feature chaining: direct linking and physical
connections. Rules A and B are directly linked if A’s
action channel and B’s trigger channel are the same
and A’s action fires B’s trigger [6]. For example, send
an email to my email account will directly fire the
trigger I received a new email. Rules A and B are
linked via physical connections if A’s action channel
affects a physical-world state, such as temperature or
illumination, that causes Rule B’s trigger to be fired.
Event+event rules conjoin two or more instantaneous
signals (i.e., events) as the trigger [2]. In practice, two
events are highly unlikely to occur at the same time; as
such, this type of rule is too narrow for what users are
trying to achieve. For example (from prior work [2]),
suppose a user wants to send themselves an email when
they are on time to work. If they program the rule “If I
arrive at work and it is 9am, then send myself an email”,
this rule would only send them an email if they arrive
at work exactly when it turns 9am (relatively unlikely),
but not if they arrive before 9am (as probably intended).
State+state rules conjoin two or more states as the
trigger [2]. For example, the rule if the door is open and
the light is on should be avoided as it is unclear whether
the action should fire when this dual state becomes
true (an event), or continuously while both states are
true (which is technically what the rule states). Prior
work [2] has shown that users have unclear mental
models about how the platform does or should handle
such state triggers. Due to this ambiguity, such rules
lead to errors and should be avoided.
Missing trigger errors occur when the set of triggers
used is insufficient to attain the desired functionality.
For example, a user may program “If it is 11pm, turn
off the porch light” and be unhappy to find the light off
when they return from a late night out, having forgotten
the additional trigger condition and I am home.
Missing action errors occur when the set of actions

is insufficient to attain the desired functionality. For
example, a home owner might want to ensure that all
doors are closed at night, and might program the rule:
“If it is 9pm, then lock the front and back door“,
forgetting to lock the basement door.
Secrecy violations occur when private information
leaks to a public audience [6]. For example, the rule
“If I receive a private message, post a public Facebook
status with its contents” contains a secrecy violation.
Integrity violations occur when information from a
less trusted information source influences a more trusted
sink, potentially corrupting it [6]. For example, the rule
“If there is a new Instagram photo by anyone in my
area, turn on the smart light” creates an integrity viola-
tion as information from an untrusted source (Instagram,
in this example) affects the state of a possibly safety-
or security-sensitive physical device.

V. ANALYSIS METHODOLOGY

Prior studies have surfaced the possibility of user-
created errors, but left open the question of whether
these errors are likely to occur in commercially available
platforms. In this section, we discuss our methodology
to investigate this possibility.

We evaluate eight current end-user programming in-
terfaces based on the above set of errors and features:
Amazon Alexa1, automate.io2, Google Home3, IFTTT4,
Microsoft Flow5, SmartRules6, Stringify7, and Zapier8.
We choose these platforms based on whether they were
appropriate for smart home programming, and whether
they supported a feature set that is compatible with
our consolidated set of errors. Our results are based on
the publicly available versions of these platforms as of
January 21, 2019.

Two researchers independently evaluated whether er-
rors can occur in a given programming interface. All
researchers used a set of canonical example rules to
determine whether a particular type of error can occur. If
there were discrepancies in the analysis, the researchers
came to a consensus based on discussion and additional
investigation of the interface. To evaluate each end-user
programming interface, we used the following scale:

1) Possible: Error is possible and the interface does
nothing to prevent it.

2) NA (Not Applicable): Error is impossible due
to a feature limitation by the interface.

3) Prevented: Error is impossible as it is prevented
by the interface.

Some errors, such as feature chaining, depends on
the specific triggers, actions, and devices supported by

1https://alexa.amazon.com
2https://automate.io
3https://store.google.com/product/google home
4https://ifttt.com
5https://flow.microsoft.com
6http://smartrulesapp.com
7https://www.stringify.com
8https://zapier.com



4

TABLE I. END USER ERROR SUSCEPTIBILITY OF SMART HOME PROGRAMMING INTERFACES

Type of Error Amazon
Alexa

automate.io Google
Home

IFTTT Microsoft
Flow

SmartRules Stringify Zapier

Lack of Action Reversal
Possible Possible Possible Possible Possible Possible Possible Possible

Feature Interaction
Possible Possible Possible Possible Possible Possible Possible Possible

Feature Chaining
NA* Possible NA Possible Possible Possible Possible Possible

Event+Event Rule
NA NA NA NA NA Prevented Prevented NA

State+State Rule
NA NA NA NA NA Prevented Prevented NA

Missing Triggers
NA NA Possible NA NA Possible Possible NA

Missing Actions
NA Possible Possible NA Possible Possible Possible Possible

Secrecy Violation
Possible Possible Possible Possible Possible Possible Possible Possible

Integrity Violation
Possible Possible Possible Possible Possible NA Possible Possible

* As discussed in Section V, the marked result depends on the specific triggers/actions/devices we analyzed, not the full possible set of all supported devices.

TABLE II. FEATURE SUPPORT OF SMART HOME PROGRAMMING INTERFACES

Type of Feature Amazon
Alexa

automate.io Google
Home

IFTTT Microsoft
Flow

SmartRules Stringify Zapier

Event Triggers
Y Y Y Y Y Y Y Y

State Triggers
N Y N N N Y Y Y

Event Actions
Y Y Y Y Y Y Y Y

Trigger Conjunctions
N N Y N N Y Y N

Action Conjunctions
Y Y Y N Y Y Y Y

Conditions on Triggers
N Y N N Y N N Y

Do While
N N N N Y N N N

Integration with Smart Home Devices
Y N Y Y N Y Y N

Other Integrations
N Y Y Y Y N Y Y

the platform. For the result marked with an asterisk
in Table I (Amazon Alexa), our conclusion is based
on the triggers/actions we evaluated, not all possible
triggers/actions/devices. (In other NA cases without an
asterisk, the sets of possible triggers or actions was fixed
and small enough to fully enumerate.)

VI. RESULTS AND ANALYSIS

In this section, we first discuss our analysis of what
kinds of errors programming interfaces are susceptible
to. Based on this initial analysis, we group error types
into categories that define how a specific error class
might be detected and prevented. Finally, we propose
points in the design space to address the errors at the
end-user programming interface level.

A. Programming Interface Analysis
Table I contains a summary of our evaluation results,

and we discuss our observations in more detail here.
No interface prevents all errors. At a high level,
we observe that no end-user programming interface
from our set prevents all errors, establishing a clear
need for design-level improvements. Furthermore, most
interfaces either do not take special measures to pre-
vent the error classes, or prevent them trivially due
to feature limitations. For example, IFTTT does not
support trigger conjunctions, thus trivially preventing
state+state or event+event errors. We note that while
feature limitations can help reduce errors (though may
not be intentionally used for that purpose by platform

Fig. 1. Stringify disallows state+state and event+event rules.

designers), they also, of course, limit the potential utility
of the platform and are thus not necessarily a desirable
way to reduce end user errors.
The only errors directly prevented, by Stringify and
SmartRules, are state+state and event+event errors.
Stringify directly detects when the user attempts to
create a rule involving a state+state or event+event con-
junction, and generates an error message when the user
tries to save the rule (Figure 1). SmartRules prevents
users from creating state+state and event+event rules
by construction: it only allows rules of the form “IF
any of these event triggers are true” or “WHILE all of
these state triggers are true”. This construction prevents
a user from creating rules such as “If the door unlocks
(event) and the light turns on (event) or if the door is
unlocked (state) and the light is on (state).

The fact that only these classes of errors are prevented
across all the interfaces we studied suggests that there
is opportunity for interfaces to prevent and reduce the
likelihood of other classes of end user programming
errors, as we discuss further below.



5

TABLE III. CATEGORIZATION OF ERRORS BASED ON WHAT
INTERFACES CAN DO TO DETECT AND PREVENT THEM

Category Error Types
Automatically detectable and
automatically preventable

Event+Event, State+State

Automatically detectable, not
automatically preventable

Lack of Action Reversal, Feature Inter-
action, Feature Chaining, Secrecy Vio-
lation, Integrity Violation

Neither automatically
detectable nor automatically
preventable

Missing Triggers, Missing Actions

Most interfaces have incomplete feature sets. Table II
summarizes a feature-based evaluation of trigger-action
programming interfaces. We note that no current inter-
face has a complete feature set. For example, IFTTT
does not allow trigger or action conjunctions.

B. Addressing Errors at Programming Time
One of the goals of our work is to introduce design

principles for programming interfaces that will help
detect and prevent the above errors. Building upon our
analysis, we categorize errors based on what interfaces
can do to detect and prevent them, shown in Table III.
Some errors can be both automatically detected
and prevented. As we have seen, some errors—like
event+event and state+state rules—can be both automat-
ically detected and prevented. Our analysis has shown
that Stringify and SmartRules do detect and prevent
these errors (Table I).
Some errors can be automatically detected, but
preventing them depends on user intent. For example,
Surbatovich et al. propose an information flow control
approach to detecting secrecy and integrity errors [6].
However, while one can logically detect a possible
secrecy violation, one cannot determine automatically
whether the information flow—e.g., sharing a photo to
Facebook—was in fact desired by the user.
Some errors require user intent to be detected
and prevented (neither auto-detectable nor auto-
preventable). Finally, some errors depend on user intent
even for detection. For example, a user might want to
program a rule to ensure that all doors are locked at
night and if not, to send a notification to lock that door.
In programming the rule, the user may miss including a
particular door as one of the intended triggers. Based on
the logical rule alone, the programming interface cannot
tell that something is awry; below, we propose possible
approaches to bridge this gap.

C. Design Recommendations
We make recommendations for trigger-action pro-

gramming interfaces to handle these error categories.
1) Automatically detect and prevent errors when pos-

sible: For the errors that can be automatically detected
and prevented, we recommend that future trigger-action
platforms implement functionality that prevents such
kinds of errors directly in the end-user interface. For
example, to prevent state+state errors, an interface might

maintain a list of the state triggers, and when a user
tries to program a state+state rule, the interface might
instantly throw an error. Alternatively, preventing such
errors by construction (as in SmartRules) directs users
to write correct rules without throwing exceptions.

2) Detect possible errors: For errors that cannot be
automatically detected, or where the user’s intent is
required to verify that a possible error is an actual
error, we propose approaches for platforms to detect
and verify possible errors. This is the first step to-
wards designing interfaces that eventually prevent such
errors. These directions present significant opportunities
for trigger-action programming platforms to improve—
recall that our analysis shows that interfaces currently
do nothing to detect or prevent such ambiguous errors.
Large-scale pattern-based predictions. A trigger-
action programming interface could use large datasets
of user-created rules to predict when a user programs
a possibly undesired rule. For example, if many users
program rules that turn on lights at a specific time,
and then turn off lights at another specific time, it is
likely that this is a common two-rule pattern. When a
user programs only half of the pattern, e.g., forgetting
to turn off the lights, the platform could detect this
divergence from common rule patterns and prompt the
user to suggest the other half of the rule. We believe that
this principle of using data on rule patterns to predict
errors is applicable to other types of errors as well, such
as missing triggers and missing actions.
Detecting feature chaining via the physical world.
In principle, it is possible to detect feature interaction
errors, but it is not possible to automatically prevent
them because it requires understanding user intent;
perhaps the interaction is intended in some cases. To
detect such errors, a simple strategy is to create a list
of pairs (X, Y), where X is an action and Y is a trigger,
and the actuation of X can eventually cause Y to trigger.
However, a challenge arises when the pair is related
through the physical world. For example, consider the
pair (Thermostat, Temperature). Although there is no
direct digital connection between the two, there is a
physical connection: actuating a thermostat will even-
tually cause the temperature in a room to rise, which
may trigger other rules. Detecting such interactions will
likely require modeling physical phenomena.

3) Prompt users for their intent when possible errors
are detected: Once a possible error is detected, either
automatically or using the above-suggested heuristics,
the next question is what should be done in response.
We propose directions for programming interfaces to
alert users of the possible errors and allow them to react
in a way that matches their intention.
Prompt users for next steps. The simplest design is to
prompt a user whenever the interface detects or predicts
a possible error. This prompt could include helpful
information on the type of error, why the interface
thinks it is an error, and an option to go back and
correct the rule. A challenge here is that end users



6

are susceptible to prompt fatigue, and thus, interface
designers should use them judiciously.
Suggest alternate or additional rules. Beyond prompt-
ing users to alert them of a possible error, a program-
ming interface could make concrete suggestions for
additional rules, leveraging the large-scale pattern-based
approach proposed above. E.g., if a user were to create
a rule “If someone is in the room, turn the lights on”, an
interface might automatically suggest an additional rule
(to correct lack of action reversal) “If no one is in the
room, turn lights off”. Or it might suggest an alternate
rule (to correct a missing trigger): “If someone’s in the
room and it’s evening, turn the lights on”.
Testing by demonstration. Interfaces could also sur-
face errors to end users by allowing them to virtually
test their rules. For example, if a user were to program
a rule to turn the camera on when there is no one is
the house and it is night, the interface could allow the
user to test what would occur if the user was at home at
night and then left home. Seeing such demonstrations,
the user may be able to detect incorrect functionality
(e.g., lack of action reversal) in advance of encountering
it in real life. A challenge to this approach is how to
design the demonstration interface to best help the user
explore the possible space of real-world states that may
affect the rule in unexpected ways.
Interactive unit testing. Finally, we propose that pro-
gramming interfaces could enable users to interactively
unit test their rules. For example, if the user were to
program a rule to lock the doors after 8pm, the interface
could ask the user questions such as If it is 9pm, should
the door be locked or unlocked? [3]. By doing so,
the interface could test whether the expectations of the
user match the reality of the programmed rule, thereby
detecting possible inconsistencies. A challenge in im-
plementing this approach is automatically determining
which “unit test” questions to ask the user to keep
the number of questions manageable while exploring
a useful set of possible questions (i.e., which questions
are most likely to surface errors).

VII. ADDITIONAL DISCUSSION

Mental model inaccuracies. For more complex con-
trol structures like Do...While, we observe that current
trigger-action programming interfaces do not instill ac-
curate mental models. For instance, a user with pro-
gramming knowledge might expect that the Do...While
construct is a loop that executes at a specific frequency.
However, the platforms we studied that support this fea-
ture do not communicate how often the loop executes.
Non-technical users might not have any mental models
about how such structures are supposed to work, and
might end up creating non-sensical rules. A challenge
is determining how to communicate the right mental
models to users about less intuitive control structures.
Platform heterogeneity. It is common for a single
home to include rules that are programmed in multiple

different trigger-action platforms. For example, a Wemo
switch can be programmed using an interface that is
included in its control app, but it can also be actuated
by voice assistants like Google Home. Detecting and
preventing error classes like feature chaining and in-
teractions becomes complex in such settings because
no single platform has a global view of all the rules
that exist in the home. An open challenge is to tackle
platform heterogeneity at the programming interface
level, where a user might program the home using a
single interface that automatically translates rules into
formats that are understandable by specific platforms.

VIII. CONCLUSION

We empirically studied whether eight commercially
available trigger-action platforms prevent or permit nine
classes of end-user errors, systematized from prior
work. We found that most platforms either do not
prevent users errors or prevent them incidentally due to
feature limitations. Based on this analysis, we catego-
rized errors on what programming interfaces can do to
detect and prevent them and then extracted insights that
laid the foundation for the design of future trigger-action
programming platforms (for example, using of datasets
of functionally-similar rules to predict user errors). We
believe this work is the first step towards trigger-action
interface designs that significantly mitigate user error.

ACKNOWLEDGEMENTS

We thank Maya Cakmak for helpful early discussions.
This work was supported in part by the National Science
Foundation under Award CNS-1513584, the MacArthur
Foundation, and the University of Washington Tech
Policy Lab.

REFERENCES
[1] W. Brackenbury, A. Deora, J. Ritchey, J. Vallee, W. He, G. Wang,

M. L. Littman, and B. Ur. How users interpret bugs in trigger-
action programming. In Conference on Human Factors in
Computing Systems (CHI), 2019.

[2] J. Huang and M. Cakmak. Supporting mental model accuracy
in trigger-action programming. In ACM International Joint Conf.
on Pervasive and Ubiquitous Computing (Ubicomp), 2015.

[3] A. J. Ko and B. A. Myers. Designing the Whyline: A debugging
interface for asking questions about program behavior. In Conf.
on Human Factors in Computing Systems (CHI), 2004.

[4] C.-J. M. Liang, L. Bu, Z. Li, J. Zhang, S. Han, B. F. Karlsson,
D. Zhang, and F. Zhao. Systematically debugging iot con-
trol system correctness for building automation. In 3rd ACM
International Conference on Systems for Energy-Efficient Built
Environments (BuildSys), 2016.

[5] C. Nandi and M. D. Ernst. Automatic trigger generation for
rule-based smart homes. In ACM Workshop on Programming
Languages and Analysis for Security (PLAS), 2016.

[6] M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and L. Jia.
Some recipes can do more than spoil your appetite: Analyzing the
security and privacy risks of ifttt recipes. In 26th International
Conference on World Wide Web (WWW), 2017.

[7] B. Ur, E. McManus, M. Pak Yong Ho, and M. Littman. Practical
trigger-action programming in the smart home. In Conf. on
Human Factors in Computing Systems (CHI), 2014.

[8] S. Yarosh and P. Zave. Locked or not?: Mental models of
iot feature interaction. In Conference on Human Factors in
Computing Systems (CHI), 2017.


