
Enabling Multiple Applications to Simultaneously Augment
Reality: Challenges and Directions
Kiron Lebeck, Tadayoshi Kohno, Franziska Roesner

University of Washington

{kklebeck,yoshi,franzi}@cs.washington.edu

ABSTRACT
Augmented reality (AR) platforms are evolving to support immer-

sive 3D experiences. Most modern AR platforms support only a

single immersive app at a time, but users may also benefit from the

ability to engage with multiple apps at once. The ability of differ-

ent apps to simultaneously augment a user’s world raises critical

questions: how might apps visually conflict with each other, and

how can we design AR platforms to support rich behaviors while

mediating conflicts? In this work, we pose and explore these ques-

tions, identifying means of visual conflict as well as platform design

strategies to mediate conflicts. We then analyze state-of-the-art AR

platforms (HoloLens, Magic Leap One, and Meta 2) to understand

their trade-offs and identify unexplored gaps in the broader design

space. Our exploration reveals key guidelines and lessons to inform

future multi-app AR efforts.

ACM Reference Format:
Kiron Lebeck, Tadayoshi Kohno, Franziska Roesner. 2019. Enabling Multiple

Applications to Simultaneously Augment Reality: Challenges and Directions.

In The 20th International Workshop on Mobile Computing Systems and Appli-
cations (HotMobile ’19), February 27–28, 2019, Santa Cruz, CA, USA. ACM,

New York, NY, USA, 6 pages. https://doi.org/10.1145/3301293.3302362

1 INTRODUCTION
Augmented reality (AR) is ushering in a new era of immersive

computing, with devices that can understand a user’s physical world

and blend 3D content into the user’s view of the world. However,

most modern AR platforms do not allow users to engage with

multiple immersive apps simultaneously, and those that provide

multi-app support still have significant limitations. Consider a user

who wishes to engage with multiple apps while walking in a city,

such as an AR navigation app [5], an AR game [11], and social

apps that augment nearby people, e.g., by displaying their names

above their heads or 3D masks over their faces. On a single-app

platform, the user can only view and interact with one app at a

time. By contrast, a multi-app platform could allow the user to shift

their attention between apps— for example, periodically glancing

at directions without closing their game, while still seeing social

overlays on nearby people.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HotMobile ’19, February 27–28, 2019, Santa Cruz, CA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6273-3/19/02. . . $15.00

https://doi.org/10.1145/3301293.3302362

Realizing the vision of multi-app AR will require identifying and

overcoming new challenges that stem from the unique capabilities

of AR platforms. In particular, rather than sharing the blank canvas

of a traditional computer screen and displaying content within

isolated windows, the output of immersive AR apps will exist atop

the backdrop of the user’s ever-changing world. These apps may

need to dynamically update their outputs in response to changes in

the user’s physical environment while simultaneously displaying

content alongside each other, raising fundamental questions: how

might immersive AR apps visually conflict with each other, and how

can multi-app AR platforms allow different apps to simultaneously

augment their shared world while mediating conflicts?

Prior AR-related efforts [1, 8, 9, 13] primarily focused on indi-
vidual apps negatively influencing users’ perceptions of the real

world, rather than on visual conflicts between multiple apps. We

currently lack a foundation for reasoning about these conflicts or

understanding the design challenges involved with supporting mul-

tiple immersive apps. In this work, we provide such a foundation by

conducting an intellectual investigation into the multi-app AR de-

sign space, deferring implementation and experimental evaluations

to future work. Specifically, we contribute the following:

1. Problem Identification: We identify the need to view the design

space of multi-app AR platforms with a critical eye towards

visual conflicts that may occur between the output of different

apps.

2. Design Space Exploration: We introduce a broad categorization

of approaches for multi-app AR platforms to handle conflicts,

and we uncover key trade-offs presented by different design

strategies.

3. AR Platform Analysis: We analyze the multi-app capabilities

of modern AR platforms to understand how they fit into the

broader design space.

4. Future Directions: Through our exploration and analysis, we

identify promising directions for future work. For example,

we encourage future work to implement and evaluate key

concepts set forth in this paper.

2 MOTIVATION
We begin with case study scenarios that highlight the possibilities

of multi-app AR, including risks that users may face from visual

interactions between apps.

Tourism. Alice uses Tour Guide while on vacation, which displays

floating icons above landmarks that she can select to read more

information. Restaurant Assistant displays food safety and cus-

tomer ratings above nearby restaurants, which Alice can select to

read detailed reviews and menu options. Navigation guides Alice

as she walks to a new destination by displaying directional arrows

https://doi.org/10.1145/3301293.3302362
https://doi.org/10.1145/3301293.3302362

on the ground, and for entertainment, an immersive Pokémon game

blends interactive 3D characters into Alice’s physical environment.

Unfortunately, multiple Pokémon characters inadvertently stand

atop Alice’s Navigation arrows on the ground and prevent Alice

from seeing her directions. At the same time, Tour Guide has an

endorsement contract with a local café, and to discourage Alice

from eating elsewhere, it displays fake negative ratings above other

eateries that block the true ratings of Restaurant Assistant.

Social Gatherings. Bob is attending a festival with friends and wishes
to connect with other attendees. Social Media AR recognizes

nearby people in Bob’s extended network and displays their names,

mutual friends, and common interests above their heads. Since Bob

is interested in romantic connections, he also uses AR Dating,

which computes compatibility scores of other users, highlights

them, and displays the scores above their heads. Finally, Bob and

his friends use Immersive Snapchat Filters to modify each other’s

appearances in fun ways, such as overlaying humorous costumes.

Bob notices that a friend-of-a-friend is also identified as a poten-

tial romantic connection, with Social Media AR and AR Dating

both displaying information above their head. However, content

from both apps appears jumbled atop each other, and Bob cannot

disambiguate content from either app. AR Dating also identifies

other potential partners near Bob, but since Snapchat has already

displayed full-body filters over them, AR Dating cannot highlight

them.

The Workplace. Carol and her colleagues use AR to improve pro-

ductivity at work, with Collaborative Workspace allowing them

to interact with shared 3D models and virtual whiteboards both

in the office and remotely. Colleague Assistant displays helpful

reminders that float next to Carol’s coworkers (such as upcom-

ing meetings or recent emails), and AR Chat allows Carol to stay

connected with her team by displaying real-time messages that

float next to her. Finally, AR Art lets Carol easily personalize her

workspace with virtual paintings, sculptures, and other artwork.

Carol findsColleague Assistant helpful, but the app is compro-

mised and intentionally positions its reminders to obscureAR Chat

messages. While AR Art improves Carol’s workplace ambiance,

the app is buggy and creates 3D objects that interfere with Col-

laborative Workspace. Since there is no indication that AR Art

created these objects, Carol believes Collaborative Workspace

to be malfunctioning and disables it. Additionally, when an AR

Chat message moves atop an AR Art piece on Carol’s desk, the

art is “knocked” to the ground.

A New Output Paradigm. The above scenarios raise a funda-

mental question: can a multi-app AR platform support the diverse

needs of immersive apps while also mitigating negative interac-

tions between them? As with apps on other computing platforms,

immersive AR apps may compete for resources such as memory,

CPU cycles, and network bandwidth. What sets these apps apart

are their output needs.

Consider a traditional desktop app, such as a video game, text

editor, or web browser. The outputs of these apps exist within inde-

pendent windows, and the behavior of these apps does not depend

upon the precise placement of their windows on the computer

screen (i.e., the user could reposition any of the windows and the

apps would behave the same). However, in AR, the behavior of an

app may depend directly on how its outputs are positioned in the

context of the user’s world. For example, the efficacy of Alice’s Nav-

igation app depends upon the app’s ability to precisely position

directional arrows on the ground, and Bob’s AR Dating and So-

cial Media AR apps must be able to place overlays above specific

people’s heads. Furthermore, on a traditional desktop display, all

content shown on screen is controlled directly by either apps or

the OS. By contrast, users will view AR apps atop the backdrop

of the physical world rather than a blank screen. This external

environment may change unpredictably, introducing variability

that AR apps may need to contend with. For example, apps may

need to dynamically update their outputs in response to changes in

the user’s world itself (e.g., AR Dating must update the locations

of its overlays as people move throughout Bob’s field of view), as

well as changes in the user’s own position within the world (e.g.,

Navigation must appropriately place new arrows on the ground

as Alice walks around and changes directions). AR presents a new

output paradigm from traditional displays, creating new challenges

that will require novel solutions.

Threat Model. In this work, we focus on the conflicts that stem

from visual interactions between immersive AR apps, leaving a

discussion of additional output modalities (e.g., audio) for Section 5.

Furthermore, we focus on users’ perceptions of AR content rather

than their interactionswith apps. Output conflicts may lead to harm-

ful user interactions (e.g., AR “clickjacking"), but such issues depend

on the specific input capabilities provided by an AR platform, which

we consider out of scope.

Our threat model encompasses both apps that are malicious, as

well as apps that are honest-but-buggy and do not intentionally seek

conflict. We begin by considering a broad space of visual conflicts

that may arise, including the following:

• Occlusion. The output of one app might block the user from

seeing that of another. For example, Alice, Bob, and Carol all

encounter occlusion above. We exclude situations where the

user intentionally positions one app’s content to occlude other

apps, focusing on occlusion events that arise in the absence

of user intent.

• Placement Denial. By occupying a particular space, one app

might prevent another from generating content. For example,

Bob’s Snapchat app prevents AR Dating from highlighting

certain individuals, by occupying the space around them with

full-body filters.

• Eviction. By moving content into a space occupied by another

app, an offending app might cause the victim’s content to be

removed or displaced, as Carol experiences when AR Chat

knocks an AR Art object to the ground.

• Masquerading. One app might generate content that is mis-

taken for that of another. For example, Carol mistakenly per-

ceives buggy output from AR Art as output from Collabo-

rative Workspace.

• Content Modification. As we will see in Section 3.2, certain

conflict mediation mechanisms may modify the visual prop-

erties of app outputs, e.g., by adjusting transparency. Such

approaches raise an additional threat: one app may be able

to induce changes in the visual properties of another app’s

content.

3 DESIGN SPACE EXPLORATION
We now turn to our design exploration of multi-app AR platforms,

asking: how can these platforms mediate visual conflicts between

apps, and what are the trade-offs associated with different design

alternatives? We consider the ability of an AR platform to meet the

following criteria while remaining resilient to the above-mentioned

conflicts:

• Support for Multiple Applications. Does the platform allow

multiple apps to run simultaneously?

• Full Output Autonomy. Does the platform give apps full control

over the placement of their outputs in 3D space?

• Some Output Autonomy. Does the platform give apps at least

some positional control over their outputs?
• Limited User Burden. Does the platform require limited or no

user involvement in managing output?

• Limited Developer Burden. Does the platform limit the need

for app developers to handle unexpected interactions with

other apps?

Figure 1 summarizes key trade-offs that characterize the design

paths we discuss throughout this section.

3.1 Display Abstractions
The interface that an AR platform provides to apps for display-

ing content determines the space of available output behaviors.

Consider the following:

Single-App. Inter-app conflicts cannot occur if only one app can

display content at a time. While this approach is at odds with our

goal of supporting multiple apps, it is the only design in Figure 1 to

meet every other goal and may suffice for individual apps requiring

the user’s undivided attention.

Windows.Onemethod for preventing output conflicts is to confine

apps to separate regions of space— a 3D analogue of the window ab-

straction used by desktop PCs.We consider a model where windows

are controlled by the user and cannot be created or repositioned

autonomously by apps. These properties allow windows to visually

isolate apps from each other, but in doing so, they trade-off the

ability for apps to dynamically generate content throughout the

user’s world. While our prior work argued for the insufficiency

of windows in AR due to such flexibility limitations [8], we find

their viability actually depends upon the needs of specific apps. For

example, Carol’s AR Chat, AR Art, and other apps naturally fit

within bounded spaces, but Alice’s Pokémon and Navigation apps

require more dynamic output capabilities.

Shared World. The final model we consider is a shared world that

allows multiple apps to simultaneously display content throughout

the user’s environment. This approach stands in contrast to win-

dows, sacrificing visual isolation to give apps the flexibility to place

AR content wherever they wish. As a result, one app may draw

in the same space as another app or otherwise occlude that app’s

output. We explore strategies for addressing such conflicts below.

3.2 Managing Output in a Shared World
When considering how to manage output conflicts in a shared

world, we must first determine who should shoulder this burden.

Thus, we explore opportunities for the OS, apps themselves, or the

user to take on this responsibility. While we present these design

paths individually, we note that they may be combined to manage

output in different ways.

3.2.1 OS-Enforced Conflict Mediation

As discussed above, giving apps the freedom to place content

wherever they wish may lead to occlusion conflicts. We thus begin

with two complementary design paths that enable the OS to pre-

vent occlusion. These designs leverage the AR object abstraction

proposed in our prior work [8]. AR objects are OS-managed primi-

tives that encapsulate AR output— for example, a single Pokémon

character would be one AR object. The OS can modify the visual

properties of AR objects (e.g., position or transparency) to prevent

occlusion. Specifically, we introduce the following approaches:

1. Runtime Policies. The OS prevents occlusion by observing vi-

sual interactions between AR objects at runtime and enforcing

policies that modify them in response. For example, the OS

could observe when one of Alice’s Pokémon objects occludes

aNavigation arrow and turn the Pokémon object partially or

fully transparent to ensure that Navigation’s arrow remains

visible.

2. Declarative Output. The OS provides apps with a language to

abstractly indicate their output needs, but it controls how these

needs are met to prevent occlusion. For example, Bob’s AR

Dating and Social Media apps could request to display con-

tent above someone’s head, and the OS would determine an

appropriate layout. Similarly, Alice’s Restaurant Assistant

app could place virtual signs in front of restaurants without

controlling the precise 3D coordinates of these objects.

Trade-off: Intelligent Mediation vs. App Freedom. Runtime

policies only allow the OS to identify occlusion after it has occurred,

and they provide no contextual information about how the OS

should respond to individual conflicts. By contrast, declarative

output ensures that apps do not conflict in the first place, and by

capturing the high-level needs of apps, it gives the OS the ability

to intelligently respond to app requests. Consider AR Dating and

Social Media from above. If the OS understands that both apps

are attempting to augment the same person’s head, it could (for

example) arrange content so that both apps are visible above the

person’s head, rather than making one app’s objects invisible.

In providing more effective mediation capabilities, declarative

output trades off the ability to support fine-grained object place-

ment for apps. Declarative output naturally caters to apps that can

specify their output needs in terms of high-level visual relation-

ships to physical-world objects, such as AR Dating. However, this

approach does not lend itself to apps such as Alice’s Pokémon game,

which needs to create and move characters at precise 3D locations

in Alice’s world. For apps such as Pokémon that cannot operate

under a declarative model, runtime policies provide the OS with a

potential fallback mechanism for mediating conflicts.

Figure 1: Potential design paths for multi-app AR platforms. Check marks indicate that a design can prevent a conflict; stars indicate that the
conflict is prevented when apps are trusted; and Xs indicate that a design cannot prevent the conflict.

Preventing Occlusion Can Enable New Conflicts. Preventing
occlusion in a shared world fundamentally requires the OS to con-

strain the output behaviors of apps. In doing so, the OS may enable

new forms of conflict. Recall the example runtime policy in which

Pokémon’s object is made transparent when it occludes Naviga-

tion’s arrow. This policy allows Navigation to induce visual mod-

ifications in Pokémon’s objects by placing arrows behind them. A

declarative approach can also enable new conflicts— for example,

the OS may deny an app’s request to display content if it cannot de-

termine an acceptable layout that would accommodate this request

without causing occlusion.

As another cautionary example, consider a least-recently-used

(LRU) mechanism that identifies overlapping objects and removes

those that the user has interacted with least recently. When applied

as a runtime policy or declarative output tool, an LRU mechanism

enables evenwell-intentioned apps to inadvertently evict each other.

Furthermore, a malicious app could leverage an LRU runtime policy

to probe for the locations of other apps’ objects by observing when

its own objects are evicted, using this information to surround a

victim app’s objects and occlude them.

Limitation: Conflict Identification.A limitation of anyOS-driven

approach is that the OS may not be able to unilaterally decide which

visual interactions are problematic. If the OS can determine a prior-

itization ordering for different apps, it can potentially decide which

apps to act upon when mediating conflicts, whether it employs

runtime policies, declarative output, or another strategy. However,

the notion of what constitutes a conflict may not always be obvious,

nor the decision of which app should receive priority. Note that

we previously explored the idea of OS-enforced runtime policies

in prior work [9]. However, that work focused primarily on visual

conflicts between AR objects and real-world objects, where the real

world was assumed to take priority, and it did not deeply consider

the viability of runtime policies for resolving multi-app conflicts.

3.2.2 Application Self-Management

We next consider the potential for apps to collaborate in avoiding

conflicts by sharing information with one another and reacting to

each other’s requests. For example, if Alice’sNavigation app could

provide the 3D locations of its directional arrows to Pokémon and

request that Pokémon not occlude them, then Pokémon could

adjust its behavior while still providing the user with the same

overall experience.

Application self-management allows apps to retain control over

their outputs and respond to conflicts in predictable ways, in con-

trast to OS-enforced policies that impose external modifications

on app content. The consequence of giving apps this level of con-

trol is that self-management is only viable under a threat model

where apps are trusted to avoid interfering with each other given

the information to do so (e.g., on a closed platform running well-

vetted apps that are designed to cooperate). A malicious app could

leverage any additional information given to it about other apps to

attack them— for example, if Pokémon was malicious and learned

precisely where Navigation’s arrows were, it could strategically

generate objects that occlude those arrows.

3.2.3 User-Managed Output

Ultimately, the user may be best positioned to determine which

conflicts are detrimental to their own AR experience. Thus, the final

design path we explore is one that leaves mediation to the user’s

discretion. An AR platform could provide the user with different

tools for this task— for example, to demote problematic apps to

more restrictive states (e.g., confining them to windows), to delete

(a) Microsoft HoloLens (b) Meta 2 (c) Magic Leap One

Figure 2: Multi-app photos from three AR headsets, taken with an iPhone 6 through the lens of each device.

individual AR objects, or to provide apps with behavioral cues (e.g.,

to instruct an app to avoid displaying content in specific spaces).

The OS also has an opportunity to inform the user’s actions by

enabling the user to easily discern potential conflicts. Recall Carol’s

Collaborative Workspace app—Carol believed this app to be

misbehaving, but the OS could inform her that the problematic ob-

ject came from another app. Furthermore, the user may be unaware

that certain conflicts have actually occurred. For example, unbe-

knownst to Alice, her Tour Guide app displayed fake restaurant

ratings that hid the overlays of Restaurant Assistant. The OS

could identify such visual interactions and provide Alice with this

information so that she can act according to her wishes.

3.3 Summary
Identifying and mediating visual conflicts between AR apps is chal-

lenging, and different design strategies present varying trade-offs,

as showcased in Figure 1. Our key insight is that any output media-

tion technique will infringe upon app functionality, and the precise

nature of this infringement differs between design paths. Addition-

ally, we observe that different techniques will be appropriate under

different trust models, and our exploration highlights the potential

for malicious apps to abuse well-intentioned capabilities.

4 AR PLATFORM ANALYSIS
In this section, we analyze the Microsoft HoloLens, Meta 2, and

Magic Leap One AR headsets, asking: how do they fit into the

broader design space above, and what unexplored directions may

warrant further investigation? Each platform supports an immer-

sive single-app mode that aligns with the first row of Figure 1, and

we thus focus our analysis on the platforms’ multi-app modes. Fig-

ure 2 depicts multi-app photos that we took through the lens of

each device.

HoloLens. The HoloLens’s multi-app mode supports Universal

Windows Platform (UWP) apps, which run within 2D windows

placed in 3D space by the user (Figure 2a). UWP apps run across

different Microsoft platforms, providing a familiar interface for both

users and developers. The window abstraction sacrifices support

for immersive output to allow the HoloLens to enforce strong visual

isolation between apps.

Meta 2. The Meta 2’s multi-app mode is similar to that of the

HoloLens, employing 2D windows placed in 3D space by the user

(Figure 2b). The device tethers to a desktop PC and supports virtual

“computer monitors" that enable the user to interact with their

desktop’s apps within AR windows.

Magic Leap One. By contrast, the Magic Leap One’s multi-app

mode supportsmultiple 3D apps at once. Appsmay create “prisms”—

bounded 3D regions in which they can display content. To probe

the capabilities of prisms, we built multiple apps that display simple

geometric shapes, and we ran two simultaneously. Figure 2c depicts

two such apps: one displays a cube within a prism, and the other

displays a sphere within a separate prism.

Prisms can be placed by the user, but we discovered that prisms

from different apps are created atop each other by default. Apps

can specify their prisms’ sizes, but we could not determine if they

can also control prism positions. If an app can control prism sizes

and positions, then prisms act as a form of a shared world with-

out conflict mediation mechanisms. As shown in Figure 2c, this

design enables occlusion conflicts to occur. Furthermore, note that

the cube and sphere are interleaved in 3D space, rather than one

app receiving explicit rendering priority. Combining output from

different apps in this way does not make intuitive sense from a

user’s perspective, suggesting that this occlusion is not intended

behavior. We note that the Magic Leap developer guidelines suggest

that prisms are intended to act as well-defined 3D windows, but

this intention is not enforced by the platform.

5 DISCUSSION
Our design exploration and analysis establish a foundation for

understanding and addressing key multi-app AR challenges. Here,

we identify promising avenues for future work.

OutputManagementTechniques.Our analysis reveals a nascent
multi-app landscape among today’s AR platforms. Critically, no

platform provides a shared world abstraction endowed with addi-

tional conflict mediation capabilities. Of the mediation strategies

captured in Figure 1, we believe that declarative output is the most

compelling path for further exploration. A declarative approach can

prevent output conflicts even with malicious apps, and it strikes a

balance between app flexibility and conflict mediation. The OS can

handle app requests in a more predictable manner than runtime

policies allow, and apps can exercise more immersive behaviors

than a windowed display abstraction supports. Furthermore, this

approach does not impose the burden of output management on

users. Even though declarative output cannot support apps that

require arbitrary 3D placement, it is well-suited for apps tasked

with augmenting specific real-world objects (e.g., Tour Guide and

AR Dating).

Going forward, we propose that future work should validate the

conceptual directions laid out in this work, by investigating the

viability of declarative output (as well as the other above-mentioned

output management techniques) in greater depth. One path would

be to build a multi-application AR platform that supports different

mediation strategies, and to evaluate these strategies along a num-

ber of axes— for example, the performance overheads that each

technique imposes on applications; the ability of these techniques

to effectively resolve output conflicts; the functionality limitations

they place on application behaviors; and the burdens they place on

both developers and users. Evaluating these criteria will better illu-

minate the trade-offs presented by different design paths, and will

confirm (or contradict) our initial intuition regarding declarative

output as the most promising path forward.

Non-Visual Output. While this work lays a foundation for ad-

dressing conflicts between AR applications in terms of visual out-

put, AR platforms may provide additional output modalities as well,

such as aural or haptic feedback. Future work should investigate

conflicts that may arise between AR apps in terms of non-visual

output, determine if and where design strategies for preventing

visual conflicts can be adapted to non-visual settings, and identify

areas where new approaches will be required. Additionally, future

work should consider opportunities for AR platforms to leverage

combinations of multiple output modalities to mediate conflicts

(e.g., by incorporating both aural and visual cues to help users

contend with visual conflicts between apps).

Understanding User Perceptions of Conflict. Determining the

visual interactions that users find problematic can inform defensive

efforts, particularly for conflicts that cannot be fully prevented. For

example, as suggested in Figure 1, no design can truly prevent mas-

querading, which depends upon users’ perceptions of AR content.

An AR platform can attempt to prevent masquerading, just as early

windowing systems employed labeling techniques to indicate the

origins of different windows (e.g., [3]). However, a user may still

incorrectly perceive the origin of AR content. Future work is thus

needed to identify design strategies that effectively engage the user

and minimize the impacts of such conflicts.

6 RELATEDWORK
Our analysis reveals limited multi-app support on today’s AR plat-

forms. Researchers have previously proposed AR systems that sup-

port multiple apps, but they have not rigorously explored the design

space or reasoned about conflicts that may arise. Argon [10] in-

stantiates a shared world with overlapping full-screen, transparent

windows for different apps, without conflict mediation. By contrast,

Studierstube [15] confines app outputs to bounded 3D windows

controlled by the user. Earlier non-AR efforts also considered secure

windowing (e.g., [3]), but as discussed, AR raises new challenges.

Researchers have also studied security and privacy for AR more

generally [2, 13]. Prior works consider output security (e.g., [1, 2,

8, 9, 13]), focusing on ways that AR apps could negatively impact

users’ views of the world. Our work instead explores visual conflicts

between apps. Other efforts address input privacy, or preventing

apps from accessing sensitive information in a user’s environment

(e.g., [4, 6, 7, 12, 14, 16, 17]) — our work is complementary.

7 CONCLUSION
Immersive multi-application AR platforms can enable users to in-

teract with apps that simultaneously blend digital content into the

physical world. However, AR apps may visually conflict with each

other as they navigate the dynamically-changing environment of

the user’s world. In this work, we identify the challenges of medi-

ating visual conflicts between apps without unduly infringing on

their intended behaviors. We explore the design space of multi-app

AR platforms and uncover key trade-offs presented by different

design alternatives. We then analyze the design choices of cur-

rent AR platforms and identify promising opportunities for future

work. Our lessons lay a foundation to guide multi-application AR

efforts, and we encourage future work to implement and evaluate

the directions set forth in this paper.

ACKNOWLEDGMENTS
We thank Niel Lebeck and Earlence Fernandes for many helpful

discussions and feedback on earlier drafts. We also thank our anony-

mous reviewers and our shepherd, Mahadev Satyanarayanan, for

their valuable guidance and feedback. This work was supported in

part by the National Science Foundation under Award CNS-1651230.

REFERENCES
[1] S. Ahn, M. Gorlatova, P. Naghizadeh, M. Chiang, and P. Mittal. Adaptive fog-

based output security for augmented reality. In Morning Workshop on Virtual
Reality and Augmented Reality Network, 2018.

[2] L. D’Antoni, A. Dunn, S. Jana, T. Kohno, B. Livshits, D. Molnar, A. Moshchuk,

E. Ofek, F. Roesner, S. Saponas, M. Veanes, and H. J. Wang. Operating system

support for augmented reality applications. In HotOS, 2013.
[3] J. Epstein, J. McHugh, R. Pascale, C. Martin, D. Rothnie, H. Orman, A. Marmor-

Squires, M. Branstad, and B. Danner. Evolution of a trusted b3 window system

prototype. In IEEE Computer Society Symposium on Research in Security and
Privacy, 1992.

[4] L. S. Figueiredo, B. Livshits, D. Molnar, and M. Veanes. Prepose: Privacy, security,

and reliability for gesture-based programming. In IEEE Symposium on Security
and Privacy, 2016.

[5] https://www.theverge.com/2018/5/8/17332480/google-maps-augmented-

reality-directions-walking-ar-street-view-personalized-recommendations-

voting.

[6] S. Jana, D. Molnar, A. Moshchuk, A. M. Dunn, B. Livshits, H. J. Wang, and

E. Ofek. Enabling fine-grained permissions for augmented reality applications

with recognizers. In USENIX Security Symposium, 2013.

[7] S. Jana, A. Narayanan, and V. Shmatikov. A scanner darkly: Protecting user

privacy from perceptual applications. In IEEE Symposium on Security and Privacy,
2013.

[8] K. Lebeck, T. Kohno, and F. Roesner. How to safely augment reality: Challenges

and directions. In HotMobile, 2016.
[9] K. Lebeck, K. Ruth, T. Kohno, and F. Roesner. Securing augmented reality output.

In IEEE Symposium on Security and Privacy, 2017.
[10] B. MacIntyre, A. Hill, H. Rouzati, M. Gandy, and B. Davidson. The argon AR web

browser and standards-based AR application environment. In ISMAR, 2011.
[11] https://www.pokemongo.com/.

[12] N. Raval, A. Srivastava, A. Razeen, K. Lebeck, A. Machanavajjhala, and L. P. Cox.

What you mark is what apps see. In MobiSys, 2016.
[13] F. Roesner, T. Kohno, and D. Molnar. Security and privacy for augmented reality

systems. Communications of the ACM, 57(4), 2014.

[14] F. Roesner, D. Molnar, A. Moshchuk, T. Kohno, and H. J. Wang. World-driven

access control for continuous sensing. In ACM Conference on Computer & Com-
munications Security, 2014.

[15] D. Schmalstieg, A. Fuhrmann, G. Hesina, Z. Szalavári, L. M. Encarnaçao, M. Ger-

vautz, and W. Purgathofer. The studierstube augmented reality project. Presence:
Teleoperators & Virtual Environments, 11(1), 2002.

[16] R. Templeman, M. Korayem, D. J. Crandall, and A. Kapadia. Placeavoider: Steering

first-person cameras away from sensitive spaces. In Network and Distributed
System Security Symposium, 2014.

[17] J. Vilk, D. Molnar, B. Livshits, E. Ofek, C. Rossbach, A. Moshchuk, H. J. Wang,

and R. Gal. Surroundweb: Mitigating privacy concerns in a 3D web browser. In

IEEE Symposium on Security and Privacy. IEEE, 2015.

https://www.theverge.com/2018/5/8/17332480/google-maps-augmented-reality-directions-walking-ar-street-view-personalized-recommendations-voting
https://www.theverge.com/2018/5/8/17332480/google-maps-augmented-reality-directions-walking-ar-street-view-personalized-recommendations-voting
https://www.theverge.com/2018/5/8/17332480/google-maps-augmented-reality-directions-walking-ar-street-view-personalized-recommendations-voting
https://www.pokemongo.com/

	Abstract
	1 Introduction
	2 Motivation
	3 Design Space Exploration
	3.1 Display Abstractions
	3.2 Managing Output in a Shared World
	3.3 Summary

	4 AR Platform Analysis
	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

