
Counting Dependence Predictors

Undergraduate Honors Thesis

Franziska Roesner
Department of Computer Sciences
The University of Texas at Austin

franzi@cs.utexas.edu

Supervising Professor: Doug Burger
Second Reader: Stephen W. Keckler

May 2, 2008

Abstract

Modern processors rely on memory dependence prediction to execute load
instructions as early as possible, speculating that they are not dependent
on an earlier, unissued store. To date, the most sophisticated dependence
predictors, such as Store Sets, have been tightly coupled tothe fetch and ex-
ecution streams, requiring global knowledge of the in-flight stream of stores
to synchronize loads with specific stores. This thesis proposes a new depen-
dence predictor design, called a Counting Dependence Predictor (CDP).
The key feature of CDPs is that the prediction mechanism predicts some set
of events for which a particular dynamic load should wait, which may in-
clude some number of matching stores. By waiting for local events only, this
dependence predictor can work effectively in a distributedmicroarchitecture
where centralized fetch and execution streams are infeasible or undesirable.
I describe and evaluate a distributed Counting Dependence Predictor and
protocol that achieves 92% of the performance of perfect memory disam-
biguation. It outperforms a load-wait table, similar to theAlpha 21264, by
11%. Idealized, centralized implementations of Store Setsand the Exclusive
Collision Predictor, both of which would be difficult to implement in a dis-
tributed microarchitecture, achieve 97% and 94% of oracular performance,
respectively.

Contents

1 Introduction 3

2 Related Work in Dependence Prediction 4
2.1 Applicability to Distributed Architectures 6

3 Counting Dependence Prediction 6
3.1 Store-Load Dependence Behavior 7
3.2 Prediction Types .. . 8
3.3 Wakeup and Training Policies 9
3.4 CDP Advantages and Disadvantages 10
3.5 CDP State Machine Optimizations 11

4 TFlex 11

5 A Distributed CDP Protocol 12
5.1 Distributed Protocol 12
5.2 Messaging Overhead .. . 14
5.3 Execution vs. Memory Side 15
5.4 Distribution of other Dependence Predictors 15

6 Experimental Results 16
6.1 Experimental Apparatus 16
6.2 Predictor Configurations 16
6.3 Accuracy . 17
6.4 Performance .. 19
6.5 Sensitivity Studies 20
6.6 CDP and Store Sets Comparison Studies 22

7 Conclusions 23

8 Acknowledgements 24

2

Figure 1. This example code illustrates the memory disambiguation problem. Instructions 3 and 5
access the same memory location, but this cannot be known a priori, since the memory locations must
first be computed by other instructions.

1 Introduction

Microprocessor performance has been increasing exponentially for the past 30 years, one of the
key enabling technologies that has powered the computing revolution. Unfortunately, continued
improvement at historical rates is far from guaranteed, since many technical challenges stand in
the way of continued progress. One of these challenges ismemory disambiguation. In modern
processors, there are many operations in flight at once, including reads and writes to memory, which
can be executed out of order. It is unknown in advance which reads and writes will access the same
memory location. If a load reads from memory before an earlier store writes to the same location,
the load may have read an incorrect value and the processor’spipeline must be flushed, resulting in
performance degradation. Figure 1 illustrates the memory disambiguation problem.

Memory disambiguation was an enormous problem for dataflow architectures in the 1970s/80s,
which required that all instruction dependences be known statically, and likely prevented their adop-
tion by forcing them to require unconventional languages. Until now it has been one of the primary
impediments to scaling the performance of high-performance, single-threaded microprocessors.
Therefore, modern processors rely onmemory dependence predictionto execute load instructions
as early as possible: they predict which reads to memory should wait for a write that will match,
and which are safe to issue early. Because most loads are dependent on one or no stores, it is not
necessary for them to wait on the completion of all previous stores. Dependence predictors rely
on the previous execution history of a load to make predictions intended to minimize performance
losses due to loads executing too early (and therefore causing flushes) or to loads being held back
longer than necessary (and therefore losing valuable opportunities for parallelism).

The early work on dependence predictors began with Moshovosand Sohi’s PC-matching pre-
dictor [10] and with the 21264 load-wait table [3]. Chrysos and Emer’s Store Sets predictor [2]
achieves close to ideal performance, defined as each load waiting only for the exact stores, if any,
that will forward values to the load.

Some key assumptions under which previous dependence predictors were shown to be near-
ideal have changed. Global wire delays have resulted in the emergence of partitioned architectures,
such as CMPs and tiled architectures [24]. Distributed architectures that execute single-threaded
code [5, 14, 20, 23, 24] without a single centralized fetch and/or execution stream will make it
challenging to deploy predictors such as Store Sets, which require observation of a complete and
centralized stream of fetched instructions to synchronizeloads with specific stores. Previously
proposed dependence prediction mechanisms also rely on global execution information to track
the completion of stores that trigger the wakeup of deferredloads. Furthermore, these distributed

3

architectures, with heavily partitioned and distributed data cache banks, may benefit from placement
of the dependence predictors at the cache banks (memory sidepredictors), even at the cost of a
slight reduction in accuracy overexecution sidepredictors. These factors result in a need for new
dependence predictors that work effectively for large-window distributed microarchitectures.

This thesis proposes a class of dependence predictor designs, calledCounting Dependence Pre-
dictors (CDPs). CDPs are designed to work well in distributed architectures, in which a centralized
fetch stream and access to some global execution information may be infeasible. Dependence pre-
dictor designs must therefore strive to make accurate predictions with as little remote information as
possible. Any needed information must be available, or easily made available, locally to the predic-
tor. The enabling feature in CDPs is that the prediction mechanism is oblivious of the fetch stream
and predicts the local events for which a particular dynamicload should wait. These events include
some number of matching stores and can be tracked without complete global execution information.
In one implementation of CDPs, a PC-indexed table of counters will produce a state that indicates
the number of matching stores for which a dynamic load shouldwait: zero (aggressive),N (already
arrived or arriving later), or all of them (conservative). Because any earlier store to the same address
is considered a match for a load, rather than waiting on some specific store that was fetched, the
predictor mechanism is decoupled from reliance on the fetchstream. If deferred loads are held at
their cache bank, information about matching stores will beavailable locally.

This thesis evaluates CDPs in the context of the TFlex microarchitecture [8], a fully distributed
tiled architecture that supports an issue width of up to 64 and an execution window of up to 4,096
instructions. Since control decisions, instruction issue, and dependence prediction may all happen
on different tiles, a distributed protocol for handling efficient dependence prediction is necessary.
This thesis describes such a protocol and shows how distributed dependence prediction can be effi-
ciently run on an aggressive processor with only small losses in performance (1-2%) over an ideal,
centralized CDP with no routing latencies.

The ideas behind CDPs are applicable to any architecture with distributed fetch and distributed
memory banks, in which the comprehensive event completion knowledge needed by previous de-
pendence predictors is costly to make available globally. This thesis describes a specific control
protocol implementation for TFlex, but this implementation may differ for other architectures with
different state.

The best-performing CDP configuration achieves 92% of oracular performance, showing only
small performance drops due to the routing latencies of the distributed prediction protocol. As a
point of comparison, a distributed load-wait table, similar to the Alpha 21264, achieves 81% of
ideal performance. Idealized, centralized implementations of Store Sets and Yoaz et al.’s Exclusive
Collision Predictor achieve 97% and 94% of oracular performance, respectively. Of these predictors,
only Load-Wait is straightforward to implement in a distributed environment, as it is essentially a
degenerate form of the CDP. Although remaining performancecan be mined from large-window
distributed dependence prediction, the CDP designs evaluated in this thesis outperform Load-Wait
by 11%.

2 Related Work in Dependence Prediction

According to Onder’s proposed classification [13], dependence predictors are typically indepen-
dence predictors that predict zero matches very well, pair predictors that are tuned for predicting
exactly one matching store, and set predictors that aim to capture more intricate load/store patterns.
Counting Dependence Predictors are a hybrid that can switchbetween these classes of predictors
depending on the program workload.

4

All previous work in dependence prediction has relied on a central point of fetch to build tables,
and/or the ability to observe a centralized execution stream to track events needed to wake deferred
loads. Predicting loads to be dependent on specific stores requires knowing which stores are in
flight and when they complete, and thus observing centralized fetch and execution streams, which
becomes infeasible or undesirable for large-window distributed architectures. These requirements
make it difficult to distribute the predictors efficiently.

Early work on dependence predictors by Moshovos and Sohi identified the potential of memory
speculation for out-of-order processors. They proposed a predictor that identified recurring RAW
memory violations using two content-addressable memory (CAM) tables [10], one for static and
the other for dynamic load-store pairs. Entries, consisting of the PCs of a static load-store pair,
are allocated in the memory dependence prediction table (MDPT) when a load violation occurs.
When a memory instruction executes, if it finds a MDPT entry, it finds or allocates an entry in the
sychronization table (MDST), which consists of dynamic load-store pairs identified by a unique
instance number. A load with an active entry (or entries, if multiple dependences are supported)
must wait for the corresponding store(s) to complete beforeexecuting. This scheme requires the
ability to track the completion of every store globally, which is difficult to implement efficiently in
a distributed environment, where stores may map to different processing tiles.

Moshovos and Sohi’s later work [11] uses a prediction schemethat assigns a common tag to
all dependences that have common producers (stores) or consumers (loads). The tag is used to
identify all of these dependences collectively, and the correct association between a load and a store
is enforced based on which store is in flight. This mechanism is similar to Chrysos and Emer’s Store
Sets predictor, which identifies sets of matching loads and stores, and makes dependent loads wait
on particular dependent stores [2]. The Store Sets implementation consists of two tables, the store
set ID table (SSIT) and the last fetched store table (LFST). When a load is fetched, it acquires a
store set ID from the SSIT and uses it to access the LFST, whichoutputs the most recently fetched
store in that set, upon which the load is made dependent. Whenstores are fetched, they also access
the SSIT and LFST, serializing stores in the same set. To handle multiple dependences between
different load and store PCs, store sets are merged if a violation occurs involving a load or store that
has already been assigned an SSID. Both of these schemes require observation of the fetch stream
to build up the prediction tables. Loads depend on specific older stores that are in flight, and these
dependences are marked as the stores are fetched. Access to global execution information is also
necessary to track the completion of stores.

Yoaz et al. developed a much simpler but still effective predictor based on distances between
dependent loads and stores [25]. In its simplest form, theircollision history table (CHT) works like
a load-wait table, holding back loads predicted dependent until all older stores have completed. The
inclusion of dynamic distances between a load and the store with which it collides allows loads to
be advanced past some but not all stores in flight. The distance with which the load’s CHT entry
is annotated will converge to the smallest distance seen as the load violates with other stores. The
distances are based on load and store ages, which are generally stamped at fetch, making it difficult
to support distributed fetch. This predictor also poses a challenge for distributed execution, as the
completion of each store must be tracked to determine when all stores a given distance away from a
deferred load have completed.

Several researchers have adapted these designs. Notably, Sha, Martin and Roth enhanced the
Store Sets predictor with path based information and proposed training on both violations and for-
wardings [16]. Similarly, Subramaniam and Loh extended thedistance predictor with partial tags
and confidence estimates to improve its accuracy even further [22]. Other follow-on work has in-
cluded several LSQ optimizations [16, 17, 21, 22] and directload-store communication [12].

5

Bench- No Matches One Match Two+ Matches
mark static dynamic static dynamic static dynamic
bzip2 64.2 93.3 20.8 6.7 15.1 0.0
crafty 81.4 95.8 14.5 4.1 4.1 0.1
gcc 79.4 99.9 15.2 0.1 5.3 0.0
gzip 72.3 92.1 20.0 7.2 7.7 0.7
mcf 71.1 98.2 22.3 1.8 6.6 0.0
parser 79.4 90.7 14.0 8.5 6.6 0.8
perlbmk 79.8 86.8 18.4 12.8 1.8 0.4
twolf 88.8 95.8 8.9 4.2 2.3 0.0
vortex 80.6 90.3 16.1 9.5 3.2 0.2
applu 78.1 87.5 21.2 12.5 0.7 0.0
apsi 90.4 96.7 9.0 3.3 0.6 0.0
art 96.8 99.8 2.7 0.2 0.5 0.0
mesa 82.2 93.5 15.7 5.7 2.2 0.9
mgrid 85.5 98.9 13.1 0.4 1.4 0.6
sixtrack 77.1 90.2 20.5 9.4 2.4 0.4
swim 100.0 100.0 0.0 0.0 0.0 0.0
wupwise 77.5 25.3 19.1 62.1 3.2 12.6
average 81.5 90.3 14.8 8.7 3.8 1.0

Table 1. Breakdown (Percent) of Store Matches for Static and DynamicLoads in SPEC2000 bench-
marks: Most loads conflict with one or fewer in-flight stores.This and table 2 were generated with
a 16-core TFlex configuration, with up to 2048 instructions in flight, 512 of which can be memory
instructions.

2.1 Applicability to Distributed Architectures

Though this thesis describes a distributed CDP protocol tailored specifically for the TFlex mi-
croarchitecture, other designs can also benefit from the advantage of the CDP [4, 5, 19, 20, 23, 24].
For example, the protocol described in Section 5 can easily be adapted for Core Fusion [5] by giv-
ing its steering management unit (SMU) the responsibilities of the controller core. While Ipek et al.
describe how a Store Sets implementation would be possible [5], their preference for the simplicity
of per-core load-wait tables is a testament to the difficultyof distributing a predictor that requires
information not easily or cleanly made globally available.

In addition, while the block-atomic nature of the ISA used byTFlex simplifies some components
of the protocol, this technique could be employed with otherISAs by artificially creating blocks
from logical blocks in the program for the sake of simplified store completion tracking. Blocks
provide simplicity advantages because they allow operations like tracking completed stores and
determining if a given instruction is in flight to be done on a block granularity and because they
naturally separate instructions into groups that may have distributed control points.

3 Counting Dependence Prediction

Counting Dependence Predictors predict the events for which a particular dynamic load should
wait. These events may include some number of arbitrary matching stores, rather than specific stores
identified before execution. This section presents data that indicates that it is possible to predict how
many in-flight stores a load will conflict with and a possible CDP implementation that predicts loads
to wait for zero, one, or more store matches.

6

Bench- no one two+ 0,1 1,2+ 0,2+ 0,1,2+
mark match match match flip flip flip flip
bzip2 67.6 0.0 0.0 8.8 0.0 0.0 23.5
crafty 82.2 0.3 0.0 12.5 0.2 0.0 4.7
gcc 81.1 1.2 0.0 11.1 0.3 0.0 6.3
gzip 72.4 0.0 0.0 17.1 0.2 0.0 10.3
mcf 68.6 0.0 0.0 22.1 0.0 0.0 9.2
parser 82.3 0.0 0.0 9.4 0.0 0.0 8.3
perlbmk 77.3 1.4 0.0 19.2 0.0 0.0 2.2
twolf 90.0 0.1 0.0 7.3 0.0 0.0 2.6
vortex 80.1 1.5 0.0 14.4 0.5 0.2 3.2
applu 73.1 0.9 0.0 25.0 0.0 0.0 0.9
apsi 90.0 0.0 0.0 9.2 0.0 0.0 0.7
art 97.3 0.8 0.0 1.4 0.3 0.0 0.3
mesa 81.0 0.2 0.0 16.2 0.0 0.0 2.6
mgrid 84.9 1.4 0.0 12.0 0.0 0.0 1.6
sixtrack 73.6 0.6 0.0 22.7 0.0 0.0 3.1
swim 100.0 0.0 0.0 0.0 0.0 0.0 0.0
wupwise 75.6 1.0 0.0 19.0 0.0 0.0 4.4
average 81.0 0.6 0.0 13.4 0.1 0.0 4.9

Table 2. Breakdown (Percent) of Dynamic Behavior of Static Loads in SPEC2000 benchmarks: Most
static loads never conflict with any in-flight stores across their dynamic instances; if they do, they
usually flip between zero and one store match.

3.1 Store-Load Dependence Behavior

Table 1 shows a breakdown of the number of in-flight matching older stores for each load, mea-
sured with an execution window of up to 512 memory instructions. Static loads are identified
uniquely by their PC. A given static load may be executed morethan once, and thedynamiccolumns
refer to these dynamic instances of static loads. For example, 72.3% of gzip’s static loads have no
store matches in at least some of their dynamic instances, but 92.1% of the dynamic instances dur-
ing the execution of the program conflict with no stores. Mostload instructions conflict with no
in-flight stores and can safely be executed as soon as their address is available. Of the loads that
must wait for data from one or more stores before executing, most depend on only one in-flight
store. A minority of static loads (3.8% on average), and evenfewer dynamic instances (1.0% on
average), must wait for two or more stores before executing safely.

Table 1 does not distinguish among loads that have differentbehavior across dynamic instances.
Table 2 shows a breakdown of the dynamic behavior of static loads. Each percentage indicates what
fraction of static loads have dynamic instances that exhibit the behavior described by that column.
For example, 72.4% of gzip’s static loads match with no stores every time they are executed, and
17.1% of the static loads dynamically alternate between zero and one matching stores. According
to these data, most static loads will never alias with any in-flight stores and thus each dynamic
instance of that load can safely be executed as soon as its address is available. Loads that flip
between different numbers of store matches are less predictible for any dependence predictor but
may nevertheless be grouped into useful categories.

These data indicate that it is beneficial to predict when it issafe to execute a given load by
predicting for how many store matches that load should wait.Counting Dependence Predictors wait
for a learned number of stores to complete before waking a load predicted to be dependent. Unlike
many previous dependence predictors, CDPs do not predict dynamic loads to be dependent on one

7

Figure 2. Load C matches different numbers of stores in different cases. In the first two cases, unless
the load waits long enough, a violation will occur because the load executes too early. In the last case,
the matching store executes correctly before the load.

or more specific dynamic stores, but rather on a predicted number of arbitrary stores.
A load violation occurs when a load executes before an older store (earlier in program order) to

the same address. When such a violation is detected, the pipeline must be flushed. Figure 2 shows
how a given static load may conflict with a different number ofstores dynamically. In the code
given, Load C follows Stores A and B in program order. Load C will always be dependent on Store
A, but whether or not it is also dependent on Store B depends onthe value ofi. The three cases in
Figure 2 show different ordering possibilities during the execution of the code. The states of one
possible CDP, outlined in Table 3, are designed to handle allof these cases and to transition among
them.

3.2 Prediction Types

When a load is predicted dependent, it must be awakened by some triggering event, as defined by
the predictor. Various information, such as the control path, the load’s PC, or its address can be used
to predict which event should cause a load to issue. In a distributed architecture, this information
would ideally be either locally available or globally broadcast for other purposes. CDPs aim to use
as little additional remote messaging as possible to predict the type of event that should cause a load
to be woken.

The states of one possible CDP are outlined in Table 3. Different prediction types are defined by
the event type that triggers the load wakeup:

1. An aggressiveload can execute speculatively as soon as its address is available.

State Event waiting for
Aggressive None

Conservative Completion of all previous stores
N-store N matching stores arriving before or after load

Table 3. Overview of CDP States

8

Figure 3. CDP Dependence Table and State Machine: A load hashes into the predictor table with its
PC, interpreting the value found there as one of the states shown. The states are updated based on load
behavior.

2. Conservativeloads must wait until all previous stores (in program order)have completed.

3. N-store loads wait for a learned number of arbitrary matching older stores. In the imple-
mentation described here, loads predicted in this third category wait on any one store match
(i.e. N equals one). Because the load’s address must be resolved before store matches can
be counted, the load is issued, routed to the corresponding cache bank, and buffered until its
wakeup event happens.

The third type of prediction raises the question of what constitutes a store-match event and
whether using the timing of matching stores can help to narrow false matches. There are two pos-
sibilities for defining a store-match event; the assumptionin the protocol description above is that a
store match happens when a store to the same address resolvesafter a waiting load. However, the
particular store on which a load is dependent may resolve before the load instead. Therefore, I also
evaluated a second policy, calledalready arrived stores, in which loads that are predicted to be de-
pendent on one store are woken immediately if a matching store still in flight has already resolved.
Waking one-store loads based on the presence of an already issued older store that is likely to be the
load’s only store match reduces the number of costly cases inwhich a load is incorrectly predicted
one-store and needlessly waits for all older stores to complete. Considering early arriving stores
wakes one-store loads and trains the dependence predictor based on store-to-load forwardings.

3.3 Wakeup and Training Policies

The predictor is a simple table hashed by load PC that contains 2-bit values representing one of
the three states described in the previous subsection. The table is initialized with each entry in the
aggressive state and is updated according to subsequent load behavior, as shown in Figure 3. The
following describes the behavior of each state:

• Aggressive: If a load was issued aggressively but should have waited foran older store, a
dependence violation flush is triggered. The load’s corresponding predictor table entry is set

9

to conservative. Otherwise the prediction was correct and this entry in the table remains in
the aggressive state.

• Conservative: As a load predicted conservative waits for all older storesto complete, the
number of older stores that execute and conflict with the deferred load are counted, and the
corresponding entry in the prediction table is updated to one-store if the count shows the
conservative execution to have been overkill (i.e. fewer than N + 1 store matches were
counted). Otherwise this entry in the table remains in the conservative state.

• N-store: In a basic CDP implementation, when a load is predicted N-store, the number of
older matching stores that execute while the load waits are also counted, and when this num-
ber reachesN , the load is woken up to issue to memory. If the number of actual store matches
does not reachN , the load is effectively treated as conservative since it must wait needlessly
for all older stores to complete. In this case, the dependence predictor is de-trained. If instead
the load was not held back long enough and a violation occurs due to a second store match,
a flush is triggered and the corresponding table entry is set to conservative. The presence of
two one-store states in the implementation described here adds hysteresis and decreases the
sensitivity of the predictor. I use this version of N-store as the baseline for the evaluation in
this thesis, but these two states could represent separate predictions of some number of stores
or some other event used to trigger load wakeup. Section 3.5 discusses slightly different
treatments of the N-store state.

3.4 CDP Advantages and Disadvantages

The CDP performs well when the number of stores that match with a load is consistently small
(one, in the case of the CDP implementation described here, but as mentioned, other values of
N could be used and/or additional intermediate states could be added). When the CDP correctly
predicts that a load will alias with one store, the load is made to wait for only that one store. The
CDP performs well especially if the one store with which a load matches is not always the same
static store, since it does not predict dependence on a specific store. Other predictors will often
force the load to wait longer than necessary: Load-Wait forces the load to wait for all older stores
to complete, ECP forces the load to wait for most older storesto complete, and Store Sets grows
more conservative as the in-flight store set grows larger. Since most dependent loads are dependent
on only one in-flight store, the CDP has this advantage in a significant number of cases.

However, in some cases the CDP is at a disadvantage compared to other predictors. There are
two types of dependence mispredictions, too conservative and too aggressive, and certain patterns
of load behavior aggravate the CDP’s mispredictions in these categories. In particular, loads that
dynamically alias with different numbers of stores can cause the prediction states to fluctuate, alter-
nately causing too aggressive and too conservative mispredictions. The following section describes
modifications to the basic protocol that address these cases.

Even correct conservative predictions are more costly for the CDP than for more precise predic-
tors like Store Sets. Beyond the N-store state, the CDP does not differentiate betweenN + 1 and
all stores. Thus, if a load is dependent on some intermediatenumber of in-flight stores, Store Sets
will hold the load back only until all stores in the in-flight store set have completed, while the CDP
will hold the load back until all in-flight stores have completed. Because the load generally does not
match with most of these stores, the load may be held back too long.

As an example, Figure 2 shows some of these cases. In the second case, the CDP will perform
very well when it predicts correctly, since it will wake the load immediately after the single store

10

match. In the third case, the CDP variant which uses already arrived stores will perform well, since
it will let the load execute immediately, rather than waiting for another match that will never happen.
In the first case, however, the CDP may not perform as well, even if it correctly predicts the load to
be conservative, since it will wait for all older stores (notshown in the example) to complete, rather
than deferring the load only until the completion of the two stores with which it actually matches.

3.5 CDP State Machine Optimizations

When the number of matching stores varies among dynamic instances of a given static load, the
CDP is at a disadvantage, because the predictor state may fluctuate based on the repeated mispredic-
tions and subsequent updates of the table. I experimented with several modifications to determine
what information may help the predictor identify the correct number of stores in such cases.

Specifically, a load might alternate between being dependent on zero or one store(s), causing an
unnecessarily conservative load execution half of the timeand a violation the other half. Similarly,
a load might alternate between being dependent on one or two (or more) stores.

To address the 0-1 case, I modified the CDP to record some bits of the store’s PC when a load
violates. When the next instance of this load is predicted one-store, the predictor checks if an
older instance of the offending store is in flight. If not, theload is allowed to issue aggressively,
assuming it will not alias with another static store. This policy aims to reduce the cases in which
an independent load is predicted one-store and defaults to waiting for all older stores to complete
because no store match ever occurs. This optimization requires additional space (for the bits of the
store PC) and can also cause incorrect predictions in the less common case where the load’s next
dynamic instance is dependent on a different static store.

I address the 1-2 case in a similar way. When a matching store prompts the wakeup of a load
predicted one-store, a check is done to see if there are any stores with the same PC in flight between
the store match and the load. If so, the wakeup of the load is deferred. This policy approximates
the aspect of Store Sets which serializes all in-flight stores belonging to a given store set and makes
the load dependent on the last of these stores. This optimization does not require additional storage
area, but may in some cases needlessly delay the load’s execution.

4 TFlex

I simulate and evaluate CDPs on the TFlex microarchitecture[8], a Composable Lightweight
Processor (CLP), that allows simple cores to be aggregated together dynamically. TFlex is a fully
distributed tiled architecture of 32 cores, with multiple distributed load-store banks, that supports
an issue width of up to 64 and an execution window of up to 4096 instructions with up to 512 loads
and stores. Since control decisions, instruction issue, and dependence prediction may all happen on
different tiles, a distributed protocol for handling efficient dependence prediction is necessary. Here
I give necessary background information about the TFlex architecture upon which the protocol of
the next section is based.

The TFlex architecture uses the TRIPS Explicit Data Graph Execution (EDGE) ISA [1] which
encodes programs as a sequence of blocks that have atomic execution semantics, meaning that
control protocols for instruction fetch, completion, and commit operate on blocks of up to 128
instructions.

The TFlex microarchitecture has no centralized microarchitectural structures. Structures across
participating cores are partitioned based on address. Eachblock is assigned an owner core based
on its starting address (PC), instructions within a block are partitioned across participating cores

11

based on instruction IDs, and the load-store queue (LSQ) anddata caches are partitioned based on
load/store data addresses.

A block is distributed across the I-caches of all participating cores. The block owner core is
responsible for initiating fetch and predicting the next block. Once predicted, the next-block ad-
dress is sent to the owner core of the predicted next block. When a memory instruction executes,
it is sent to the appropriate core’s cache bank based on its target address. Pipeline flushes due to
misspeculations are also initiated by the owner of the blockcausing the misspeculation. Since loads
and stores to the same address will always go to the same memory core, dependence violations
are detected by the load-store queue at that cache bank. Before committing the block, the owner
core must receive completion confirmations of stores, register writes, and one branch from all par-
ticipating cores. Once the block is ready to commit, the owner sends a commit message to each
participating core and waits for acknowledgements. All control, data request and response, and
operand communication among cores uses a number of two-dimensional wormhole-routed meshes.

Each block owner has the PCs of all in-flight blocks available. This information allows the 0-
1 and 1-2 flip CDP optimization described in the previous section to be implemented efficiently
by simply checking whether another in-flight block has the same block PC as the block of the
store in question, rather than needing to perform the more difficult and non-centralized operation of
determining which stores are in flight. This also prevents mispredictions due to overly specifying
stores, since one block usually contains several stores.

5 A Distributed CDP Protocol

A correct protocol for dependence prediction must fulfill several requirements. First, all loads
and stores to the same address must be matched. For each load,a prediction must be made and
stored, and if the load is deferred, the corresponding wakeup event must be detected and the waiting
load must be notified. Thus, the protocol must detect when allstores older than a given load have
completed. Finally, the correctness of speculation must beconfirmed.

Several of these requirements are non-trivial to implementin a distributed environment. Be-
cause instructions can execute on any core, it may to difficult to detect wakeup events, such as the
completion of all stores older than a given load. Though all loads and stores to the same address
will eventually arrive at the same cache bank in TFlex, it is less trivial to track the completion of
older stores to different cache banks. Confirming correctness of speculations is also non-trivial, as
significant events may happen elsewhere in the architecture.

Because CDPs use as little information as possible to make predictions–in particular, they do not
need to follow all stores in the fetch stream–they are more amenable to operation in a distributed
environment. A number of additional control messages, described in this section, are required for
correct handling of the issues discussed above.

There are three goals to consider when designing a distributed protocol: few control messages,
few control message types (i.e., low protocol complexity),and low latency on the critical path. The
distributed CDP protocol I describe achieves all of these goals.

5.1 Distributed Protocol

Figure 4 lists the message types and stages of prediction distributed among different processing
cores. The protocol requires four message types, includingthree not in the base TFlex design. The
prediction and wakeup of a load are handled by the protocol asfollows. Each of these operations
may occur on any core, including on the same core.

12

Figure 4. Distributed Counting Dependence Predictor Protocol: Simple control messages between
processing cores are used to implement dependence prediction.

1. A load is issued at one core (core5 in Figure 4), and is routed to the core containing the
appropriate cache bank, determined by the address of the load.

2. Prediction occurs at the core containing that cache bank (core6, in this example). If a load
is predicted aggressive, it executes immediately. If it is predicted to be dependent (either
conservative or waiting on some events), aregistration messageis sent to the controller core,
the block owner of the load’s block (core1). The registration message is a request to the block
owner to inform the load when all older stores have completed.

3. To enable the block’s controller core to know when all stores prior to a particular load have
completed, two additional types of messages are needed. First, whenever a store in the block
completed, astore completion messageis sent from the core containing its cache bank back
to the controller core. Store completion messages do not need to be added specifically for
the purpose of dependence prediction, as they are already necessary for determining block
completion.

4. Before a registered load can be safely woken, the controller core must know that all stores
older than that load have completed. It is not sufficient to know that all older stores in the
load’s block have completed, since there may be pending stores in older blocks. Thus, an
all-stores-completed messageis needed, which block ownerN sends to block ownerN + 1
as soon as all of the stores in blockN have completed. This single message sent between con-
troller cores of successive blocks prevents the need to broadcast store completion messages
to every core.

5. The controller core is responsible for sendingwakeup messagesto any load that has registered
with it (i.e., any load which was not predicted aggressive).As soon as all stores older than a

13

Benchmark Registration Wakeup Store Completion
bzip2 0.0871 0.0871 2.9272
crafty 0.2196 0.2196 1.3628
gcc 0.0029 0.0029 5.3457
gzip 0.0606 0.0606 1.2160
mcf 0.0319 0.0319 0.7255
parser 0.0349 0.0349 1.2567
perlbmk 0.1304 0.1304 1.0702
twolf 0.1978 0.1978 1.5402
vortex 0.1586 0.1586 2.2079
applu 0.4303 0.4303 1.6618
apsi 0.1328 0.1328 3.0648
art 0.2424 0.2424 1.5538
mesa 0.2218 0.2218 1.9681
mgrid 0.1317 0.1317 0.9838
sixtrack 0.3892 0.3892 3.0365
swim 0.0000 0.0000 2.9896
wupwise 0.6659 0.6659 2.1654
average 0.1846 0.1846 2.0633

Table 4. Breakdown of average number of messages sent per block for each message type (across
SPEC2000 benchmark run on a 16-core TFlex configuration). Registration and wakeup messages have
identical counts because one wakeup message is sent in response to every registration message. All-
stores-completed messages are excluded from this table, asexactly one is always sent per block.

registered load have completed, the controller core sends awakeup message back to the core
containing the cache bank at which the load is waiting.

6. When a waiting load receives a wakeup message, it is free toexecute. The wakeup message
is required for loads predicted conservative and loads incorrectly predicted N-store (i.e. those
which effectively execute conservatively because no storematch ever occurs). Because a
memory instruction’s cache bank is determined by its address, matching stores will always
arrive at the core where the load is waiting. Thus, if there were N matches for an N-store
load, that load will already have been woken when the wakeup message arrives. In this case,
the wakeup message can safely be ignored. If two matching stores arrive in program order
after a later dependent load has issued, the first will wake the load and the second will trigger
a violation flush.

5.2 Messaging Overhead

One all-stores-completed message must be sent per 128-instruction block, and two messages
(registration and wakeup) must be sent for each load predicted to be dependent on unarrived older
stores. Loads correctly predicted independent require no messages at all. In our experiments, each
load requires the sending of only 0.28 control messages, on average. Table 4 shows a breakdown per
message type of average number of messages per block across all supported SPEC2000 benchmarks.
Of these message types, store completion messages, which were already necessary in the base TFlex
design, are the highest in volume. Registration, wakeup, and all-stores-completed messages are
specific to the CDP protocol.

Experiments show that the message latencies have only smalleffects on overall CDP perfor-
mance, since most can be hidden by execution. The case when message latency can lead to perfor-

14

mance loss is when a load on the critical path is predicted conservative and needs to wait for the
wakeup message before knowing that all older stores have completed. For the best-performing CDP
configuration, removing the message latencies improves performance by only 1% on average.

Load registration messages are sent to the control tile by each load predicted dependent. These
registrations must be stored at the control tile until the load’s corresponding wakeup event has
been detected and the wakeup message dispatched, thus requiring space to buffer these messages
and ways of handling overflow of this space. The performance results for this thesis are all based
on infinite buffer space for these messages, but I found that the maximum number of registration
messages held by a control tile at one time (across the SPEC2000 benchmark suite with a 16-core
TFlex configuration) is 14. Thus a small buffer at each control tile would suffice. In the event of
overflow, any of the strategies described in [15] to deal withLSQ overflow would be appropriate.
For instance, a flush could be triggered if a registration from a load in the oldest in-flight block
arrives at a full buffer. An alternative solution is to simply force all loads that attempt to register at
a control tile with a full buffer to execute aggressively.

5.3 Execution vs. Memory Side

The distributed protocol described above implements dependence prediction on the memory side,
after a load has been issued and sent to the core containing its cache bank. Loads index into the
predictor table at that core. Alternatively, prediction could occur on the execution side, before the
load issues. The advantage of this placement is that the table is indexed by the load’s PC, rather
than a combination of the PC and address. However, execution-side prediction will require a more
complex protocol with additional messaging for little gain.

To model the effect of placing the predictor table on the execution side, I approximated execution-
side prediction by having all loads index into an ideally centralized predictor table. This idealized
experiment improves CDP performance by 2% over the best performing memory-side implementa-
tion, but does not model the effects of complicating the distributed protocol or splitting the predic-
tion table by cores.

5.4 Distribution of other Dependence Predictors

Moshovos and Sohi’s initial dependence predictor [10] was designed for Multiscalar [19], a dis-
tributed architecture in which a single program is divided into a collection of tasks distributed to
a number of parallel processing units. However, there are several reasons why this design cannot
be adapated for other distributed architecture like TFlex.First, Multiscalar’s predictor was imple-
mented as a centralized structure [10]. Moshovos and Sohi dodescribe how their predictor can be
distributed by replicating the CAM tables at every processing tile [10]. However, because this ap-
proach requires the broadcasting of information to keep thetables synchronized and to wake loads,
it is difficult to scale it efficiently to 8 or 16 nodes. While a more efficient mechanism for distribut-
ing this predictor can be imagined, the key issue is that speculation in Multiscalar is only intra-
and not inter-task, and intra-task dependences are enforced by the local core, leaving the depen-
dence predictor to deal only with inter-task dependences [9, 19]. This predictor model works well
for Multiscalar with its specific tradeoffs, but works less well for regular superscalars, leading to
Moshovos and Sohi’s later design not specifically targetingMultiscalar [9].

Moshovos and Sohi’s later predictor [11] is similar in concept to Store Sets and poses a similar
challenge to effective distribution. Store Sets [2], as discussed before, is tightly coupled with the
fetch stream. Loads and stores are assigned a store set as they are fetched, allowing loads to be

15

Parameter Configuration

Instruction
Supply

Partitioned 8KB I-cache (1-cycle hit); Local/Gshare Tournament predictor (8K+256 bits, 3 cycle
latency) with speculative updates; Num. entries: Local: 64(L1) + 128(L2), Global: 512, Choice:
512, RAS: 16, CTB: 16, BTB: 128, Btype: 256.

Execution Out-of-order execution, RAM structured 128-entry issue window, dual-issue (up to two INT and
one FP).

Data Supply Partitioned 8KB D-cache (2-cycle hit, 2-way set-associative, 1-read port and 1-write port); 64-
entry LSQ bank; 1031-entry CDP; 4MB decoupled S-NUCA L2 cache [7] (8-way set-associative,
LRU-replacement); L2-hit latency varies from 5 cycles to 27cycles depending on memory ad-
dress; average (unloaded) main memory latency is 150 cycles.

Simulation Execution-driven, validated in TRIPS-like configuration to be within 7% of TRIPS prototype
hardware cycle counts.

Benchmarks 17 SPEC CPU benchmarks currently supported (9 Int, 8 FP), simulated with single SimPoints of
100 million instructions [18].

Table 5. Single Core TFlex Microarchitecture Parameters

made dependent on specific stores and stores within the same set to be serialized. This approach
also requires tracking events that may not occur in the same place in the microarchitecture, making
distributed execution difficult as well.

Distance predictors such as that of Yoaz et al. [25] require that memory instructions each be
assigned relative ages, typically at fetch/decode. Loads are then made to wait on stores a certain
distance (in dynamic instructions) away. This scheme requires tracking specific stores in flight. The
store in question may not actually be a match and may not report to the core responsible for waking
the load. Thus it is insufficient to know that all stores belonging to controller cores of previous
blocks have completed, since a load in a given block may be waiting on an arbitrary store in the
middle of a previous block. A straightforward implementation requires the broadcasting of store
completion information, whereas the CDP requires only one point-to-point message per store.

6 Experimental Results

6.1 Experimental Apparatus

The experiments described in this section were run using a subset of the SPEC2000 benchmark
suite (17 SPEC CPU benchmarks currently supported, 9 Integer and 8 FP), simulated with single
SimPoints of 100 million instructions [18], on a simulator that models the TFlex microarchitecture.
Table 5 details the simulator configuration for one core. Unless otherwise noted, the configuration
used for these experiments is 16 composed cores, which corresponds to an execution window of up
to 2048 instructions, 512 of which may be memory instructions. The flush penalty modeled requires
5-13 cycles to detect the misprediction, to flush the mispredicted state, and to reinitiate dispatch;
some additional cycles are required to refill the pipeline.

6.2 Predictor Configurations

All results are compared to the cycle counts achieved by perfect memory disambiguation, in
which loads are made to wait only exactly as long as necessarywithout causing a violation. As
soon as exactly all of the stores (if any) upon which a load is dependent have completed, the load
executes. I evaluated the following load execution strategies:

1. Conservative: All loads wait until all older stores have completed.

2. Aggressive: All loads execute as soon as their addresses are available.

16

Figure 5. Breakdown of Predictions for All Loads for SPECINT Benchmarks

3. Load-Wait: A load is predicted either dependent or not; if it is predicted dependent, it waits
on the completion of all previous stores. This policy is essentially a CDP with only two
options (zero or all stores). The Load-Wait predictor is distributed using the same protocol
as described in Section 5. The predictor table is reset every10000 blocks to prevent overly
conservative load execution as the table saturates.

4. CDP: I use the best CDP configuration, including all of the modifications described in Sec-
tion 3. I used a prediction table size of 1031 entries per core, indexed usingLoadPC mod
(TableSize). Using a prime number forTableSize reduces aliasing and allows this modulus
to be computed efficiently in hardware [6].

5. Store Sets: I implemented a Store Sets predictor according to the description in Chrysos and
Emer’s paper [2]. This implementation is ideal in that message latencies are not modeled
and access to a centralized fetch stream and execution information is assumed. For these
experiments, I sized the centralized Store Sets structuresto be comparable with the cumulative
size of the distributed CDP structures.

6. Exclusive Collision Predictor (ECP): I also implemented a version of Yoaz et al.’s Exclu-
sive Collision Predictor [25]. I use a tagless collision history table (CHT) augumented with
distance information. Once a load violates, its entry in thetable is marked valid and contin-
ues to predict a collision until the table is cleared (every 10000 blocks). The CHT is sized
to be comparable to the CDP table, and I use the same hash function to index into it. This
implementation is also ideally centralized and message latencies are not modeled.

6.3 Accuracy

The graphs in Figures 5 and 6 show a breakdown of the accuracy of different prediction mech-
anisms. Each set of bars (per benchmark) shows the breakdownfor Load-Wait, CDP, ECP, and
Store Sets. Each bar represents the fraction of all loads executed that were correctly predicted

17

Figure 6. Breakdown of Predictions for All Loads for SPECFP Benchmarks

independent, correctly predicted dependent, incorrectlypredicted independent, and incorrectly pre-
dicted dependent. An incorrectly predicted independent load results in a flush, while an incorrectly
predicted dependent load results in later-than-necessaryissue of the load.

On average, CDP mispredicts fewer independent loads than doany of the other schemes. By
dynamically de-training the predictor rather than requiring an occasional clearing of the table, it
avoids becoming too conservative as prediction histories build up.

However, when the CDP does make an overly conservative prediction, it can be more costly than
for Store Sets or the ECP. If a load is predicted one-store, but no store match ever occurs, then the
load defaults to waiting for all older stores to complete. Bycontrast, if Store Sets makes an overly
conservative prediction, the load will not wait for all older stores, but only the additional stores that
have mapped to the same set. ECP will also generally not have the worst case behavior of the CDP
in these situations, but is still likely to lose more parallelism than Store Sets. This difference is
because Store Sets will not make loads dependent on stores that are not in flight, while the ECP may
degenerate to essentially Load-Wait behavior as the predicted dependence distance decreases.

The CDP mispredicts slightly more dependent loads than the other predictors. By having most
loads wait only on one matching store, CDP may miss the rarer cases in which there is another match
coming that is not caught by the 1-2 optimization. This case will result in a violation flush. By
contrast, once a load violates, Load-Wait will force its later instances to execute conservatively until
the table is cleared, thus never causing another violation.Store Sets will also always synchronize
loads with their previously conflicting stores, preventingreviolations of the same load-store pairs
until the table is cleared. The ECP, like the CDP, may fail to prevent reviolations if the control path
is different for the next instance of a previously violatingload.

Loads that are counted as correctly predicted dependent arenot all handled in the same way.
For instance, when the Load-Wait strategy forces a dependent load to wait for all older stores to
complete, the dependence was correctly identified, but potential parallelism was still lost, since the
load only needed to wait for the stores upon which it was dependent, not all stores. In this sense,
the CDP may have an advantage over other predictors in the case where a load is correctly predicted
dependent. When the CDP correctly predicts a load to wait forone store match, the load is not
delayed needlessly past that one match. Since most dependent loads conflict with only one in-flight

18

Figure 7. Comparison of Dependence Prediction Mechanisms

store, this situation is not rare.
By contrast, ECP will make the load wait for all older stores up to some point specified by the

distance, which may degenerate to all older stores in the worst case. Store Sets is less sensitive to
this situation since loads wait for specific stores, but as in-flight store sets grow large, loads may be
needlessly delayed. In particular, if a load is always dependent on one store, but this store differs
across dynamic instances of the load, Store Sets will delay the load needlessly, while the CDP will
wake it as soon as the store match occurs.

6.4 Performance

The graph in Figure 7 compares the performance, measured in cycles, of the predictor configura-
tions relative to perfect disambiguation. The best CDP protocol achieves 92% of the performance
of perfect, whereas aggressive achieves 76% and Load-Wait achieves 81%. Conservative execu-
tion gives by far the worst performance, achieving only 45%.Store Sets achieves 97% of perfect
performance and the ECP achieves 94%.

Since most loads match with only zero or one stores (see Table1), making every load wait on all
previous stores (conservative execution) is unnecessary and loses opportunities for parallelism. The
Load-Wait strategy only executes a subset of load conservatively, but this approach is still far too
conservative, and Load-Wait performs barely better than aggressive execution, despite the high cost
of load violation flushes in the aggressive case. The CDP performs 11% better than the Load-Wait
policy while only slighly increasing the complexity of the predictor structures.

Ideal Store Sets still outperforms the best CDP configuration by 5% on average. By making loads
dependent on a specific dynamic set of in-flight stores, StoreSets can avoid some of the pathological
cases that can arise for the CDP in which dynamic instances ofa load each have a different number
of store matches. The ECP, which outperforms the CDP by 2% on average, will also delay loads for
a shorter period of time, in the average case, than does the CDP when it predicts loads conservative.

The CDP does outperform Store Sets and the ECP for several benchmarks, especially those where
the CDP mispredicts fewer independent loads. The accuracy breakdown indicates that the CDP’s
higher misprediction rate of dependent loads, and subsequent violation flushes, degrades the overall

19

Figure 8. Predictor Performance with Increasing Window Size

average performance.
The models of Store Sets and the ECP that I implemented assumeaccess to a centralized fetch and

execution stream without additional overhead. A nontrivial amount of overhead (message latencies,
broadcasting of global information needed locally by the predictor) would be required to distribute
these prediction mechanisms in the same manner as the CDP, since the needed information cannot
always efficiently be made locally available. Implementingthem as ideally centralized allowed me
to implement them as originally described without adding distribution complexity. This approach
provides the upper bound on the performance comparing to theCDP, which is designed for a dis-
tributed system. Furthermore, I also model an ideal centralized CDP, as mentioned in section 5.3,
which achieves on average 94% of perfect, comparable to the ECP.

Figure 8 shows the average performance of the different prediction schemes as the window size
increases from an 8-tile TFlex configuration (up to 1,024 instructions, up to 256 of which can be
memory instructions, in flight at once) to 16-tile and 32-tile configurations. The larger the window,
the more a predictor’s performance degrades due to the issues described above. With a window of
up to 4,096 instructions, with up to 1,024 memory instructions, the CDP (with message latencies
modeled) achieves about 85% of ideal performance. The performance of Load-Wait drops to 74%,
since it forces all loads predicted dependent to wait on the completion of all older stores. As the
number of memory instructions in flight increases, this policy becomes more costly. At this window
size, Store Sets (ideally centralized, no message latencies) still achieves 94% of ideal performance,
but the difficulty of supporting a distributed Store Sets-like protocol increases.

6.5 Sensitivity Studies

The graph in Figure 9 shows the performance gain from incrementally adding the modifications
described in Section 3. Each bar in the graph includes the modifications added in all of the bars to
the left of it, with the exception of 1-2 flip, which does not include the 0-1 flip optimization.Full
includes both the 0-1 and the 1-2 optimizations. Between thebasic CDP protocol and the version
including all optimization, there is a 4% performance improvement.

All of the modifications to the CDP protocol (Figure 9) improve or maintain performance across
most benchmarks. The 1-2 flip optimization sometimes slightly degrades performance, as it may

20

Figure 9. Effect of Modifications on CDP Performance

Figure 10. Reducing Aliasing in CDP Prediction Table

hold back some loads longer than necessary. However, the 0-1and 1-2 optimizations interact in a
favorable way. Table 2 indicates that on average 4.9% of loads alternate between matching with no,
one, or more than one stores. When the 0-1 and 1-2 optimizations are combined, loads that fall into
this category are more likely to be deferred long enough to execute safely, without having to wait
for all older stores to complete.

The only benchmark that does not benefit from all optimizations is applu. A prediction accuracy
breakdown for applu shows that the percentage of loads predicted dependent incorrectly actually
increases, even for the 0-1 optimization. This result may bebecause when the 0-1 optimization pre-
vents a load predicted one-store from being deferred because no block with the PC of the previously
offending store’s block is in flight, it does not update the predictor table to aggressive, causing a
later instance of that load to be more likely to be mispredicted one-store or even conservative.

Because predictions depend on the current state of the entryin the predictor table to which loads
index, and because these states are updated based on the accuracy of predictions, the CDP is sensi-
tive to aliasing. Since some of the resulting mispredictions can be costly, aliasing is fundamentally

21

Figure 11. Comparison of Store Sets and CDP Performance on applu

more expensive for the CDP that for other predictors. I thus tested CDP performance using dif-
ferent hash functions to index into the predictor table. Theresults of these experiments are shown
in Figure 10. The baseline, indexing into the table with(LoadPC mod TableSize), where table
size in these experiments is 1024, achieves 90.9% of ideal performance. Using(LoadPC mod
(TableSize − 1)) (hash function 2 in Figure 10) improves performance to 91.9%of ideal, nearly
the performance of an infinitely large table (92.0%). UnlessTableSize or (TableSize − 1) is a
prime number [6], it may not be possible to efficiently compute this modulus in hardware. For
all other experiments discussed above, I thus used a table size of 1031 and the hash function
(LoadPC mod TableSize), which achieves performance essentially identical to thatof an in-
finitely large table.

6.6 CDP and Store Sets Comparison Studies

The benchmark for which the CDP performs worst compared to Store Sets is applu. The graph
in Figure 11 shows a comparison of Store Sets and CDP performance on applu. For each load
PC, there are three bars, representing how many stores from the in-flight store set actually matched
with the load (all, some, or none). Each of these bars in splitbetween instances that the CDP
mispredicted too conservatively or too aggressively. The most dominant category is loads for which
Sets Sets had some of the stores from the in-flight store set matching and that the CDP predicted
overly conservatively. Similar graphs for other benchmarks for which Store Sets performs better
show the same trend. This confirms the hypothesis that Store Sets outperforms CDP primarly in the
cases where only a few (more than one) of the in-flight stores match: Store Sets waits only for all of
the stores in the store set to complete and then issues the load, while the CDP must avoid a violation
by forcing the load to wait for all older stores to complete.

It may thus be beneficial to add states to the CDP that allow predictions of some number of stores
between one and all. The graph in Figure 12, however, shows that this modification would not be
straightforward. The graph shows a breakdown of Store Sets behavior (how many stores were in
the in-flight store set, and how many of those stores actuallymatched the load’s target address) for
instances in which the CDP made an overly conservative prediction. Most of the data is clustered

22

Figure 12. Breakdown for Store Sets Behavior for CDP’s Overly Conservative Loads for applu

around the lower part of the graph (small in-flight store sets) but ranges up to large in-flight store
sets with a variable number of actual store matches. This variability, which is also seen in other
benchmarks for which Store Sets outperform the CDP, makes itdifficult for the CDP to predict
anything more specific than the common cases of zero, one, or many matches.

7 Conclusions

Previously proposed dependence predictors, such as those of Moshovos and Sohi [12], Store
Sets [2], and the ECP [25] worked well for centralized superscalar processors, and were shown
to be near ideal. Future architectures, however, will be heavily distributed, making it difficult to
observe the single, ordered fetch stream and centralized execution information required for these
and similar designs.

This thesis evaluates a new type of dependence predictor, which waits for some number of match-
ing stores or other local events to complete before allowinga load to issue. The main advantage
of this scheme is that the prediction mechanism is decoupledfrom reliance on observation of the
fetch and execution streams. The best configuration achieves 92% of oracular performance, in an
instruction window of up to 2,048 instructions with up to 512loads or stores.

The simplicity of the CDP allows it to be easily implemented in a distributed microarchitecture.
Despite its simplicity, it significantly outperforms another policy, Load-Wait, which is as easy to
distribute. Predictors similar to Store Sets and the Exclusive Collision Predictor require access to a
centralized fetch stream and global execution information. CDPs use only information that is easily
made available locally, yet still achieve good performance.

CDPs may be at a disadvantage when loads are not consistentlydependent on the same number of
stores. They are also sensitive to overly conservative prediction, either by predicting an independent
load to wait on one store match that never arrives, or by predicting a load to be conservative, which
prevents violations, but will make any load wait longer thanit needs to (no load is dependent on all
older stores). CDPs perform well when the number of store matches is small and consistent, since
loads are made to wait only as long as necessary. Wakeup conditions can easily be changed under

23

the CDP framework by altering the definition of the wakeup triggering event, such as by including
already arrived stores in the count of matches.

As window size increases, resulting in more memory instructions in flight, loads alias with more
in-flight stores, and the disadvantages of each dependence prediction scheme are aggravated. Mis-
predictions become more costly, so accurate prediction becomes more important. Efficient dis-
tributed implementations also become more important as larger window sizes increase the burden
on the distributed protocol. By slightly complicating the CDP design, such as by allowing pre-
dictions of some number of store matches between one and all,or by using path-based or other
information to address fluctuating numbers of store matches, CDP performance may be improved
further for large windows without compromising its abilityto support fully distributed execution.

8 Acknowledgements

I thank Doug Burger for his tremendous support and patience throughout my research experience
these past two years. I am also extremely grateful to Simha Sethumadhavan for his guidance, and to
him and the rest of the CART group for answering my endless questions. Finally, I extend my thanks
to Steve Keckler for his feedback and to Keshav Pingali for his involvement as external committee
member.

Robert McDonald first proposed a variant of the CDP. This research is supported by the Defense
Advanced Research Projects Agency under contract F33615-01-C-4106, by NSF CISE Research
Infrastructure grant EIA-0303609, and by the Intel Undergraduate Research Fellowship for 2007-
2008.

References

[1] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John, C. Lin, C. R. Moore, J. Burrill, R. G. McDonald,
W. Yoder, and the TRIPS Team. Scaling to the End of Silicon with EDGE architectures.IEEE Computer, 37(7):44–
55, July 2004.

[2] G. Z. Chrysos and J. S. Emer. Memory dependence prediction using store sets. InProceedings of the 25th Annual
International Symposium on Computer Architecture, pages 142–153, 1998.

[3] Compaq Computer Corporation.Alpha 21264 Microprocessor Hardware Reference Manual, July 1999.

[4] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu, M. Chen, and K. Olukotun. The Stanford Hydra CMP.IEEE
Micro, 20(2):71–84, 2000.

[5] E. Ipek, M. Kirman, N. Kirman, and J. F. Martı́nez. Core Fusion: Accommodating software diversity in chip
multiprocessors. InProceedings of the 34th International Symposium on Computer Architecture, pages 186–197,
2007.

[6] M. Kharbutli, K. Irwin, Y. Solihin, and J. Lee. Using prime numbers for cache indexing to eliminate conflict misses.
In Proceedings of the 10th International Conference on High-Performance Computer Architecture, pages 288–299,
2004.

[7] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-uniform cache structure for wire-delay dominated on-chip
caches. InProceedings of the 12th International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 211–222, 2002.

[8] C. Kim, S. Sethumadhavan, M. S. S. Govidan, N. Ranganathan, D. Gulati, S. W. Keckler, and D. Burger. Compos-
able lightweight processors. InProceedings of the 40th International Symposium of Microarchitecture, 2007.

[9] A. Moshovos. Personal Communication, November 2007.

[10] A. Moshovos and G. S. Sohi. Dynamic speculation and synchronization of data dependences. InProceedings of
the 24th International Symposium on Computer Architecture, pages 181–193, 1997.

24

[11] A. Moshovos and G. S. Sohi. Streamlining inter-operation memory communication via data dependence prediction.
In Proceedings of the 30th International Symposium on Microarchitecture, pages 235–245, 1997.

[12] A. Moshovos and G. S. Sohi. Speculative memory cloakingand bypassing.International Journal of Parallel
Programming, pages 427–456, 1999.

[13] S. Onder. Effective memory dependence prediction using speculation levels and color sets. InProceedings of the
2002 International Conference on Parallel Architectures and Compilation Techniques, pages 232–, 2002.

[14] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W. Keckler, and C. R. Moore. Exploiting
ILP, TLP, and DLP with the polymorphous TRIPS architecture.In Proceedings of the 30th Annual International
Symposium on Computer Architecture, pages 422–433, June 2003.

[15] S. Sethumadhavan, F. Roesner, J. S. Emer, D. Burger, andS. W. Keckler. Late-binding: Enabling unordered load-
store queues. InProceedings of the 34th Annual International Symposium on Computer Architecture, 2007.

[16] T. Sha, M. M. Martin, and A. Roth. Scalable store-load forwarding via store queue index prediction. InProceedings
of the 38th International Symposium on Microarchitecture, pages 159–170, 2005.

[17] T. Sha, M. M. Martin, and A. Roth. NoSQ: Store-Load Communication without a Store Queue. InProceedings of
the 39th International Symposium on Microarchitecture, pages 106–113, 2006.

[18] T. Sherwood, E. Perelman, and B. Calder. Basic Block Distribution Analysis to Find Periodic Behavior and Simu-
lation Points in Applications. InProceedings of the International Conference on Parallel Architectures and Com-
pilation Techniques, pages 3–14, 2001.

[19] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar processors. InProceedings of the 22nd International
Symposium on Computer Architecture, pages 414–425, 1995.

[20] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. The STAMPede approach to thread-level speculation.ACM
Transactions on Computer Systems, 23(3):253–300, 2005.

[21] S. S. Stone, K. M. Woley, and M. I. Frank. Address-indexed memory disambiguation and store-to-load forwarding.
In Proceedings of the 38th International Symposium on Microarchitecture, pages 171–182, 2005.

[22] S. Subramaniam and G. H. Loh. Fire-and-Forget: Load/Store Scheduling with No Store Queue at all. InProceedings
of the 39th International Symposium on Microarchitecture, pages 273–284, 2006.

[23] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin. WaveScalar. InProceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 291–302, December 2003.

[24] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, P. Finch, R. Barua, J. Babb,
S. Amarasinghe, and A. Agarwal. Baring it all to software: RAW machines.IEEE Computer, 30(9):86–93, Septem-
ber 1997.

[25] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan. Speculation techniques for improving load related instruction schedul-
ing. In Proceedings of the 26th International Symposium on Computer Architecture, pages 42–53, May 1999.

25

