
Appears in the Proceedings of the 35th Annual International Symposium on Computer Architecture

Counting Dependence Predictors

Franziska Roesner Doug Burger Stephen W. Keckler

Department of Computer Sciences

The University of Texas at Austin

cart@cs.utexas.edu

Abstract

Modern processors rely on memory dependence predic-
tion to execute load instructions as early as possible, spec-
ulating that they are not dependent on an earlier, unissued
store. To date, the most sophisticated dependence predic-
tors, such as Store Sets, have been tightly coupled to the
fetch and execution streams, requiring global knowledge
of the in-flight stream of stores to synchronize loads with
specific stores. This paper proposes a new dependence
predictor design, called a Counting Dependence Predictor
(CDP). The key feature of CDPs is that the prediction mech-
anism predicts some set of events for which a particular
dynamic load should wait, which may include some num-
ber of matching stores. By waiting for local events only,
this dependence predictor can work effectively in a dis-
tributed microarchitecture where centralized fetch and ex-
ecution streams are infeasible or undesirable. We describe
and evaluate a distributed Counting Dependence Predictor
and protocol that achieves 92% of the performance of per-
fect memory disambiguation. It outperforms a load-wait ta-
ble, similar to the Alpha 21264, by 11%. Idealized, central-
ized implementations of Store Sets and the Exclusive Colli-
sion Predictor, both of which would be difficult to implement
in a distributed microarchitecture, achieve 97% and 94% of
oracular performance, respectively.

1 Introduction

Load dependence predictors have become a necessary
feature in high-performance microprocessors. In high-
ILP superscalar cores, exploitable parallelism is curtailed
if most loads cannot issue before earlier stores with unre-
solved addresses. Dependence predictors speculate which
loads are safe to issue aggressively, and which loads must
wait for all or a subset of older stores’ addresses to resolve
before issuing.

The early work on dependence predictors began with
Moshovos and Sohi’s PC-matching predictor [9] and was

instantiated with the 21264 load-wait table [3]. Chrysos and
Emer’s Store Sets predictor [2] achieves close to ideal per-
formance, defined as each load waiting only for the exact
stores, if any, that will forward values to the load.

The base assumptions under which previous depen-
dence predictors were shown to be near-ideal have changed.
Global wire delays have resulted in the emergence of par-
titioned architectures, such as CMPs and tiled architec-
tures [22]. Distributed architectures that execute single-
threaded code [5, 13, 18, 21, 22] without a single central-
ized fetch and/or execution stream will make it challenging
to deploy predictors such as Store Sets, which require ob-
servation of a complete and centralized stream of fetched
instructions to synchronize loads with specific stores. Pre-
viously proposed dependence prediction mechanisms also
rely on global execution information to track the comple-
tion of stores that trigger the wakeup of deferred loads. Fur-
thermore, these distributed architectures, with heavily par-
titioned and distributed data cache banks, may benefit from
placement of the dependence predictors at the cache banks
(memory sidepredictors), even at the cost of a slight re-
duction in accuracy overexecution sidepredictors. These
factors result in a need for new dependence predictors that
work effectively for large-window distributed microarchi-
tectures.

This paper proposes a class of dependence predictor
designs, calledCounting Dependence Predictors(CDPs).
CDPs are designed to work well in distributed architec-
tures, in which a centralized fetch stream and access to some
global execution information may be infeasible. Depen-
dence predictor designs must therefore strive to make ac-
curate predictions with as little remote information as pos-
sible. Any needed information must be available, or easily
made available, locally to the predictor. The enabling fea-
ture in CDPs is that the prediction mechanism is oblivious
of the fetch stream and predicts the local events for which a
particular dynamic load should wait. These events include
some number of matching stores and can be tracked without
complete global execution information. In one implementa-



tion of CDPs, a PC-indexed table of counters will produce a
state that indicates the number of matching stores for which
a dynamic load should wait: zero (aggressive),N (already
arrived or arriving later), or all of them (conservative). Be-
cause any earlier store to the same address is considered
a match for a load, rather than waiting on some specific
store that was fetched, the predictor mechanism is decou-
pled from reliance on the fetch stream. If deferred loads are
held at their cache bank, information about matching stores
will be available locally.

We evaluate CDPs in the context of the TFlex microar-
chitecture [8], a fully distributed tiled architecture that sup-
ports an issue width of up to 64 and an execution window of
up to 4,096 instructions. Since control decisions, instruction
issue, and dependence prediction may all happen on differ-
ent tiles, a distributed protocol for handling efficient depen-
dence prediction is necessary. This paper describes such a
protocol and shows how distributed dependence prediction
can be efficiently run on an aggressive processor with only
small losses in performance (1-2%) over an ideal, central-
ized CDP with no routing latencies.

The ideas behind CDPs are applicable to any architec-
ture with distributed fetch and distributed memory banks,
in which the comprehensive event completion knowledge
needed by previous dependence predictors is costly to make
available globally. We describe a specific control protocol
implementation for TFlex, but this implementation may dif-
fer for other architectures with different state.

The best-performing CDP configuration achieves 92%
of oracular performance, showing only small performance
drops due to the routing latencies of the distributed pre-
diction protocol. As a point of comparison, a distributed
load-wait table, similar to the Alpha 21264, achieves 81%
of ideal performance. Idealized, centralized implementa-
tions of Store Sets and Yoaz et al.’s Exclusive Collision Pre-
dictor achieve 97% and 94% of oracular performance, re-
spectively. Of these predictors, only Load-Wait is straight-
forward to implement in a distributed environment, as it is
essentially a simplified version of the CDP. Although re-
maining performance can be mined from large-window dis-
tributed dependence prediction, the CDP designs evaluated
in this paper outperform Load-Wait by 11%.

2 Related Work in Dependence Prediction

According to Onder’s proposed classification [12], de-
pendence predictors are typically independence predictors
that predict zero matches very well, pair predictors that are
tuned for predicting exactly one matching store, and set
predictors that aim to capture more intricate load/store pat-
terns. Counting Dependence Predictors are a hybrid that
can switch between these classes of predictors depending
on the program workload.

All previous work in dependence prediction has relied
on a central point of fetch to build tables, and/or the abil-
ity to observe a centralized execution stream to track events
needed to wake deferred loads. Predicting loads to be de-
pendent on specific stores requires knowing which stores
are in flight and when they complete, and thus observing
centralized fetch and execution streams, which becomes in-
feasible or undesirable for large-window distributed archi-
tectures. These requirements make it difficult to distribute
the predictors efficiently.

Early work on dependence predictors by Moshovos and
Sohi identified the potential of memory speculation for out-
of-order processors. They proposed a predictor that identi-
fied recurring RAW memory violations using two CAM ta-
bles [9], one for static and the other for dynamic load-store
pairs. When a load violation occurs, entries are allocated in
the static table. When a memory instruction executes, if it
finds an entry in the static table, it find or allocates an entry
in the dynamic table. A load with an active entry (or entries,
if multiple dependences are supported) must wait for the
corresponding store(s) to complete before executing. This
scheme requires the ability to track the completion of every
store globally, which is difficult to implement efficiently in
a distributed environment, where stores may map to differ-
ent processing tiles.

Moshovos and Sohi’s later work [10] uses a prediction
scheme that assigns a common tag to all dependences that
have common producers (stores) or consumers (loads). The
tag is used to identify all of these dependences collectively,
and the correct association between a load and a store is en-
forced based on which store is in flight. Chrysos and Emer’s
Store Sets predictor identifies sets of matching loads and
stores, making dependent loads wait on particular depen-
dent stores [2]. When a load is fetched, it acquires a store
set ID and uses it to determine the most recently fetched
store in the same set, upon which the load is made depen-
dent. When stores are fetched, they go through the same
process, serializing stores in the same set. Both of these
schemes require observation of the fetch stream to build up
the prediction tables. Loads depend on specific older stores
that are in flight, and these dependences are marked as the
stores are fetched. Access to global execution information
is also necessary to track the completion of stores.

Yoaz et al. developed a much simpler but still effective
predictor based on distances between dependent loads and
stores [23]. In its simplest form, their collision history ta-
ble (CHT) works like a load-wait table, holding back loads
predicted dependent until all older stores have completed.
The inclusion of dynamic distances between a load and the
store with which it collides allows loads to be advanced past
some but not all stores in flight. The distance with which the
load’s CHT entry is annotated will converge to the smallest
distance seen as the load violates with other stores. The dis-



Bench- No Matches One Match Two+ Matches
mark static dynamic static dynamic static dynamic
bzip2 64.2 93.3 20.8 6.7 15.1 0.0
crafty 81.4 95.8 14.5 4.1 4.1 0.1
gcc 79.4 99.9 15.2 0.1 5.3 0.0
gzip 72.3 92.1 20.0 7.2 7.7 0.7
mcf 71.1 98.2 22.3 1.8 6.6 0.0
parser 79.4 90.7 14.0 8.5 6.6 0.8
perlbmk 79.8 86.8 18.4 12.8 1.8 0.4
twolf 88.8 95.8 8.9 4.2 2.3 0.0
vortex 80.6 90.3 16.1 9.5 3.2 0.2
applu 78.1 87.5 21.2 12.5 0.7 0.0
apsi 90.4 96.7 9.0 3.3 0.6 0.0
art 96.8 99.8 2.7 0.2 0.5 0.0
mesa 82.2 93.5 15.7 5.7 2.2 0.9
mgrid 85.5 98.9 13.1 0.4 1.4 0.6
sixtrack 77.1 90.2 20.5 9.4 2.4 0.4
swim 100.0 100.0 0.0 0.0 0.0 0.0
wupwise 77.5 25.3 19.1 62.1 3.2 12.6
average 81.5 90.3 14.8 8.7 3.8 1.0

Table 1. Breakdown (Percent) of Store Matches for Static
and Dynamic Loads in SPEC2000 benchmarks: Most loads
conflict with one or fewer in-flight stores. This and table 2
were generated with a 16-core TFlex configuration , with up
to 2048 instructions in flight, 512 of which can be memory
instructions.

tances are based on load and store ages, which are generally
stamped at fetch, making it difficult to support distributed
fetch. This predictor also poses a challenge for distributed
execution, as the completion of each store must be tracked
to determine when all stores a given distance away from a
deferred load have completed.

Several researchers have adapted these designs. Notably,
Sha, Martin and Roth enhanced the Store Sets predictor
with path based information and proposed training on both
violations and forwardings [14]. Similarly, Subramaniam
and Loh extended the distance predictor with partial tags
and confidence estimates to improve its accuracy even fur-
ther [20]. This follow-on work has included several LSQ
optimizations [14, 15, 19, 20] and direct load-store commu-
nication [11].

2.1 Applicability to Distributed Architectures

Though we describe a distributed CDP protocol tailored
specifically for the TFlex microarchitecture, other designs
can also benefit from the simplicity of the CDP [4, 5, 17,
18, 21, 22]. For example, the protocol described in Sec-
tion 5 can easily be adapted for Core Fusion [5] by giving
its steering management unit (SMU) the responsibilities of
the controller core. While Ipek et al. describe how a Store
Sets implementation would be possible [5], their preference
for the simplicity of per-core load-wait tables is a testament
to the difficulty of distributing a predictor that requires in-
formation not easily or cleanly made globally available.

Bench- no one two+ 0,1 1,2+ 0,2+ 0,1,2+
mark match match match flip flip flip flip
bzip2 67.6 0.0 0.0 8.8 0.0 0.0 23.5
crafty 82.2 0.3 0.0 12.5 0.2 0.0 4.7
gcc 81.1 1.2 0.0 11.1 0.3 0.0 6.3
gzip 72.4 0.0 0.0 17.1 0.2 0.0 10.3
mcf 68.6 0.0 0.0 22.1 0.0 0.0 9.2
parser 82.3 0.0 0.0 9.4 0.0 0.0 8.3
perlbmk 77.3 1.4 0.0 19.2 0.0 0.0 2.2
twolf 90.0 0.1 0.0 7.3 0.0 0.0 2.6
vortex 80.1 1.5 0.0 14.4 0.5 0.2 3.2
applu 73.1 0.9 0.0 25.0 0.0 0.0 0.9
apsi 90.0 0.0 0.0 9.2 0.0 0.0 0.7
art 97.3 0.8 0.0 1.4 0.3 0.0 0.3
mesa 81.0 0.2 0.0 16.2 0.0 0.0 2.6
mgrid 84.9 1.4 0.0 12.0 0.0 0.0 1.6
sixtrack 73.6 0.6 0.0 22.7 0.0 0.0 3.1
swim 100.0 0.0 0.0 0.0 0.0 0.0 0.0
wupwise 75.6 1.0 0.0 19.0 0.0 0.0 4.4
average 81.0 0.6 0.0 13.4 0.1 0.0 4.9

Table 2. Breakdown (Percent) of Dynamic Behavior of
Static Loads in SPEC2000 benchmarks: Most static loads
never conflict with any in-flight stores across their dynamic
instances; if they do, they usually flip between zero and one
store match.

In addition, while the block-atomic nature of the ISA
used by TFlex simplifies some components of the protocol,
this technique could be employed with other ISAs by arti-
ficially creating blocks from logical blocks in the program
for the sake of simplified store completion tracking.

3 Counting Dependence Prediction

Counting Dependence Predictors predict the events for
which a particular dynamic load should wait. These events
may include some number of arbitrary matching stores,
rather than specific stores identified before execution. In
this section, we present data that indicates that it is possi-
ble to predict how many in-flight stores a load will conflict
with and a possible CDP implementation that predicts loads
to wait for zero, one, or more store matches.

3.1 Store-Load Dependence Behavior

Table 1 shows a breakdown of the number of in-flight
matching older stores for each load, measured with an ex-
ecution window of up to 512 memory instructions. Static
loads are identified uniquely by their PC. A given static
load may be executed more than once, and the ”dynamic”
columns refer to these dynamic instances of static loads. For
example, 72.3% of gzip’s static loads have no store matches
in at least some of their dynamic instances, but 92.1% of the
dynamic instances during the execution of the program con-
flict with no stores. Most load instructions conflict with no



Figure 1. Load C matches different numbers of stores in different cases. In the first two cases, unless the load waits long enough, a
violation will occur because the load executes too early. Inthe last case, the matching store executes correctly beforethe load.

in-flight stores and can safely be executed as soon as their
address is available. Of the loads that must wait for data
from one or more stores before executing, most depend on
only one in-flight store. A minority of static loads (3.8% on
average), and even fewer dynamic instances (1.0% on av-
erage), must wait for two or more stores before executing
safely.

Table 1 does not distinguish among loads that have dif-
ferent behavior across dynamic instances. Table 2 shows a
breakdown of the dynamic behavior of static loads. Each
percentage indicates what fraction of static loads have dy-
namic instances that exhibit the behavior of that column.
For example, 72.4% of gzip’s static loads match with no
stores every time they are executed, and 17.1% of the static
loads dynamically alternate between zero and one match-
ing stores. According to these data, most static loads will
never alias with any in-flight stores and thus each dynamic
instance of that load can safely be executed as soon as its ad-
dress is available. Few loads always alias with a consistent
number of stores, instead flipping between zero or more.

These data indicate that it is possible to predict when it
is safe to execute a given load by predicting for how many
store matches that load should wait. Counting Dependence
Predictors wait for a learned number of stores to complete
before waking a load predicted to be dependent. Unlike
many previous dependence predictors, CDPs do not predict
dynamic loads to be dependent on one or more specific dy-
namic stores, but rather on a predicted number of arbitrary
stores.

A load violation occurs when a load executes before an
older store to the same address. When such a violation is
detected, the pipeline must be flushed. Figure 1 shows how
a given static load may conflict with a different number
of stores dynamically. In the code given, Load C follows

Stores A and B in program order. Load C will always be
dependent on Store A, but whether or not it is also depen-
dent on Store B depends on the value ofi. The three cases
in Figure 1 show different ordering possibilities during the
execution of the code. The states of one possible CDP, out-
lined in Table 3, are designed to handle all of these cases
and to transition among them.

3.2 Prediction Types

When a load is predicted dependent, it must be woken by
some triggering event, as defined by the predictor. Various
information, such as the control path, the load’s PC, or its
address can be used to predict which event should cause a
load to issue. In a distributed architecture, this information
would ideally be either locally available or globally broad-
cast for other purposes. CDPs aim to use as little additional
remote messaging as possible to predict the type of event
that should cause a load to be woken.

The states of one possible CDP are outlined in Table 3.
Different prediction types are defined by the event type that
triggers the load wakeup:

1. An aggressiveload can execute speculatively as soon
as its address is available.

2. Conservativeloads must wait until all previous stores
(in program order) have completed.

State Event waiting for
Aggressive None

Conservative Completion of all previous stores
N-store N matching stores arriving before or after load

Table 3. Overview of CDP States



Figure 2. CDP Dependence Table and State Machine: A
load hashes into the predictor table with its PC, interpreting
the value found there as one of the states shown. The states
are updated based on load behavior.

3. N-store loads wait for a learned number of arbitrary
matching older stores. In the implementation de-
scribed here, loads predicted in this third category wait
on any one store match (i.e.N equals one). Be-
cause the load’s address must be resolved before store
matches can be counted, the load issues to memory and
waits at the data cache for its wakeup event.

The third type of prediction raises the question of what
constitutes a store-match event. The assumption in the pro-
tocol description above was that a store match happens
when a store to the same address resolves after a waiting
load. However, the particular store on which a load is de-
pendent may resolve after the load instead. Therefore, we
also evaluated a policy, calledalready arrived stores, in
which loads that are predicted to be dependent on one store
are woken immediately if a matching store still in flight has
already resolved. By waking one-store loads based on the
presence of an already issued older store that is likely to be
the load’s only store match, we reduce the number of costly
cases in which a load is incorrectly predicted one-store and
needlessly waits for all older stores to complete. By con-
sidering early arriving stores, we wake one-store loads and
train the dependence predictor on store-to-load forwardings.

3.3 Wakeup and Training Policies

The predictor is a simple table hashed by load PC that
contains 2-bit values representing one of the three states de-
scribed in the previous subsection. The table is initialized
with each entry in the aggressive state and is updated ac-
cording to subsequent load behavior, as shown in Figure 2.
The following describes the behavior of each state:

• Aggressive: If a load was issued aggressively but
should have waited for an older store, a dependence
violation flush is triggered. The load’s corresponding
predictor table entry is set to conservative.

• Conservative: As a load predicted conservative waits
for all older stores to complete, the number of older
stores that execute and conflict with the deferred load
are counted, and the corresponding entry in the predic-
tion table is updated if the count shows the conserva-
tive execution to have been overkill (i.e. fewer than
two store matches were counted).

• N-store: In a basic CDP implementation, when a
load is predicted N-store, the number of older match-
ing stores that execute while the load waits are also
counted, and when this number reachesN , the load is
free to execute. If the number of actual store matches
does not reachN , the load is effectively treated as con-
servative since it has to wait needlessly for all older
stores to complete. In this case, the dependence pre-
dictor is de-trained. The presence of two one-store
states in the implementation described here decreases
the sensitivity of the predictor. We use this version of
N-store as the baseline for the evaluation in this paper,
but these two states could represent separate predic-
tions of some number of stores or some other event
used to trigger load wakeup. We discuss slightly dif-
ferent treatments of the N-store state in the next sub-
section.

3.4 CDP State Machine Optimizations

When the number of matching stores varies among dy-
namic instances of a given static load, the CDP can be at
a disadvantage, because the predictor state may fluctuate
based on the repeated mispredictions and subsequent up-
dates of the table. We experimented with other modifica-
tions to determine what information may help the predictor
identify the correct number of stores in such cases.

Specifically, a load might alternate between being depen-
dent on zero or one store(s), causing an unneccesarily con-
servative load execution half of the time and a violation the
other half. Similarly, a load might alternate between being
dependent on one or two (or more) stores.

To address the 0-1 case, we modified the CDP to record
some bits of the store’s PC when a load violates. When
the next instance of this load is predicted one-store, the pre-
dictor checks if an older instance of the offending store is
in flight. If not, the load is allowed to issue aggressively,
assuming it will not alias with another static store. This
policy aims to reduce the cases where an independent load
is predicted one-store and defaults to waiting for all older
stores to complete because no store match ever occurs. This



optimization requires additional space (for the bits of the
store PC) and can also cause incorrect predictions in the
less common case where the load’s next dynamic instance
is dependent on a different static store.

We address the 1-2 case in a similar way. When a match-
ing store prompts the wakeup of a load predicted one-store,
a check is done to see if there are any stores with the same
PC in flight between the store match and the load. If so,
the wakeup of the load is deferred. This policy approxi-
mates the aspect of Store Sets which serializes all in-flight
stores belonging to a given store set and makes the load de-
pendent on the last of these stores. This optimization does
not require additional storage area, but may in some cases
needlessly delay the load’s execution.

4 TFlex

We simulate and evaluate CDPs on the TFlex microar-
chitecture [8], a Composable Lightweight Processor (CLP),
that allows simple cores, also called tiles, to be aggregated
together dynamically. TFlex is a fully distributed tiled ar-
chitecture of 32 cores, with multiple distributed load-store
banks, that supports an issue width of up to 64 and an execu-
tion window of up to 4096 instructions with up to 512 loads
and stores. Since control decisions, instruction issue, and
dependence prediction may all happen on different tiles, a
distributed protocol for handling efficient dependence pre-
diction is necessary. Here we give necessary background
information about the TFlex architecture upon which the
protocol of the next section is based.

The TFlex architecture uses the TRIPS Explicit Data
Graph Execution (EDGE) ISA [1] which encodes programs
as a sequence of blocks that have atomic execution seman-
tics, meaning that control protocols for instruction fetch,
completion, and commit operate on blocks of up to 128 in-
structions.

The TFlex microarchitecture has no centralized microar-
chitectural structures. Structures across participatingcores
are partitioned based on address. Each block is assigned
an owner core based on its starting address (PC), instruc-
tion within a block are partitioned across participating cores
based on instruction IDs, and the load-store queue (LSQ)
and data caches are partitioned based on load/store data ad-
dresses.

A block is distributed across the I-caches of all partici-
pating cores. The block owner core is responsible for initi-
ating fetch and predicting the next block. Once predicted,
the next-block address is sent to the owner core of the pre-
dicted next block. When a memory instruction executes, it
is sent to the appropriate core’s cache bank based on its tar-
get address. Pipeline flushes due to misspeculations are also
initiated by the owner of the block causing the misspecula-
tion. Since loads and stores to the same address will always

go to the same memory core, dependence violations are de-
tected by the load-store queue at that cache bank. Before
committing the block, the owner core must receive comple-
tion confirmations of stores, register writes, and one branch
from all participating cores. Once the block is ready to com-
mit, the owner sends a commit message to each participat-
ing core and waits for acknowledgements. All control, data
request and response, and operand communication among
cores uses a number of two-dimensional wormhole-routed
meshes.

Each block owner has the PCs of all in-flight blocks
available. This information allows the 0-1 and 1-2 flip CDP
optimization described in the previous section to be imple-
mented efficiently by simply checking whether another in-
flight block has the same block PC as the block of the store
in question.

5 A Distributed CDP Protocol

Because CDPs use as little information as possible to
make predictions–in particular, they do not need to follow
all stores in the fetch stream–they are more amenable to op-
eration in a distributed environment. The problems of con-
firming correctness of speculations and knowing when all
stores previous to a given load have completed remain. A
number of additional control messages, as described in this
section, are required for correct operation.

There are three goals to consider when designing a dis-
tributed protocol: few control messages, few control mes-
sage types (i.e., low protocol complexity), and low latency
on the critical path. The distributed CDP protocol we de-
scribe achieves all of these goals.

5.1 Distributed Protocol

Figure 3 lists the message types and stages of prediction
distributed among different processing cores. The protocol
requires four message types, including three not in the base
TFlex design. The prediction and wakeup of a load are han-
dled by the protocol as follows. Each of these operations
may occur on any core, which may be the same in some
cases.

1. A load is issued at one core (core5 in Figure 3) , and
is routed to the core containing the appropriate cache
bank, determined by the address of the load.

2. Prediction occurs at the core containing that cache
bank (core6, in this example). If a load is predicted
aggressive, it executes immediately. If it is predicted to
be dependent (either conservative or waiting on some
events), aregistration messageis sent to the controller
core, the block owner of the load’s block (core1). The



Figure 3. Distributed Counting Dependence Predictor
Protocol: Simple control messages between processing
cores are used to implement dependence prediction.

registration message is a request to the block owner to
inform the load when all older stores have completed.

3. To enable the block’s controller core to know when all
stores prior to a particular load have completed, two
additional types of messages are needed. First, when-
ever a store in the block completes, astore completion
messageis sent from the core containing its cache bank
back to the controller core. Store completion messages
do not need to be added specifically for the purpose of
dependence prediction, as they are already necessary
for determining block completion.

4. Before a registered load can be safely woken, the con-
troller core must know that all stores older than that
load have completed. It is not sufficient to know
that all older stores in the load’s block have com-
pleted, since there may be pending stores in older
blocks. Thus, anall-stores-completed messageis
needed, which block ownerN sends to block owner
N +1 as soon as all of the stores in blockN have com-
pleted. This single message sent between controller
cores of successive blocks prevents the need to broad-
cast store completion messages to every core.

5. The controller core is responsible for sendingwakeup
messagesto any load that has registered with it (i.e.
any load which was not predicted aggressive). As soon
as all stores older than a registered load have com-
pleted, the controller core sends a wakeup message
back to the core containing the cache bank at which
the load is waiting.

6. When a waiting load receives a wakeup message, it
is free to execute. The wakeup message is required
for loads predicted conservative and loads incorrectly

predicted N-store (i.e. those which effectively execute
conservatively because no store match ever occurs).
Because a memory instruction’s cache bank is deter-
mined by its address, matching stores will always ar-
rive at the core where the load is waiting. Thus, if there
were N matches for an N-store load, that load will al-
ready have been woken when the wakeup message ar-
rives. In this case, the wakeup message can safely be
ignored. If two matching stores arrive in program or-
der after a later dependent load has issued, the first will
wake the load and the second will trigger a violation
flush.

One all-stores-completed message must be sent per
128-instruction block, and two messages (registration and
wakeup) must be sent for each load predicted to be depen-
dent on unarrived older stores. Loads correctly predicted
independent require no messages at all. In our experiments,
each load requires the sending of only 0.28 control mes-
sages, on average. We found that the message latencies
have only small effects on overall performance, since most
can be hidden by execution. The case when message la-
tency can lead to performance loss is when a load on the
critical path is predicted conservative and needs to wait for
the wakeup message before knowing that all older stores
have completed. For the best-performing CDP configura-
tion, removing the message latencies improves performance
by only 1% on average.

5.2 Execution vs. Memory Side

The distributed protocol described above implements de-
pendence prediction on the memory side, after a load has
been issued and sent to the core containing its cache bank.
Loads index into the predictor table at that core. Alterna-
tively, prediction could occur on the execution side, before
the load issues. The advantage of this placement is that the
table is indexed by the load’s PC, rather than a combination
of the PC and address. However, execution-side prediction
will require a more complex protocol with additional mes-
saging for little gain.

To model the effect of placing the predictor table on the
execution side, we approximated execution-side prediction
by having all loads index into an ideally centralized predic-
tor table. This idealized experiment improves CDP perfor-
mance by 2% over the best performing memory-side imple-
mentation, but does not model the effects of complicating
the distributed protocol or splitting the prediction tableby
cores.

5.3 Distribution of other Dependence Predictors

Moshovos and Sohi [9] describe how their predictor can
be distributed by replicating the CAM tables at every pro-



Parameter Configuration

Instruction Supply Partitioned 8KB I-cache (1-cycle hit); Local/Gshare Tournament predictor (8K+256 bits, 3 cycle latency) with speculative
updates; Num. entries: Local: 64(L1) + 128(L2), Global: 512, Choice: 512, RAS: 16, CTB: 16, BTB: 128, Btype: 256.

Execution Out-of-order execution, RAM structured 128-entry issue window, dual-issue (up to two INT and one FP).
Data Supply Partitioned 8KB D-cache (2-cycle hit, 2-way set-associative, 1-read port and 1-write port); 64-entry LSQ bank; 1031-entry

CDP; 4MB decoupled S-NUCA L2 cache [7] (8-way set-associative, LRU-replacement); L2-hit latency varies from 5 cycles
to 27 cycles depending on memory address; average (unloaded) main memory latency is 150 cycles.

Simulation Execution-driven, validated in TRIPS-like configuration to be within 7% of TRIPS prototype hardware cycle counts.
Benchmarks 17 SPEC CPU benchmarks currently supported (9 Int, 8 FP), simulated with single SimPoints of 100 million instructions [16].

Table 4. Single Core TFlex Microarchitecture Parameters

cessing tile. Because this approach requires the broadcast-
ing of information to keep the tables synchronized and to
wake loads, it is difficult to scale it efficiently to 8 or 16
nodes.

Moshovos and Sohi’s later predictor [10] is similar in
concept to Store Sets and poses a similar challenge to ef-
fective distribution. Store Sets [2], as discussed before,is
tightly coupled with the fetch stream. Loads and stores
are assigned a store set as they are fetched, allowing loads
to be made dependent on specific stores and stores within
the same set to be serialized. This approach also requires
tracking events that may not occur in the same place in the
microarchitecture, making distributed execution difficult as
well.

Distance predictors such as that of Yoaz et al. [23] re-
quire that memory instructions each be assigned relative
ages, typically at fetch/decode. Loads are then made to wait
on stores a certain distance (in dynamic instructions) away.
This scheme requires tracking specific stores in flight. Thus
it is insufficient to know that all stores belonging to con-
troller cores of previous blocks have completed, since a load
in a given block may be waiting on a store in the middle of a
previous block. A straightforward implementation requires
the broadcasting of store completion information, whereas
the CDP requires only one point-to-point message per store.

6 Experimental Results

6.1 Experimental Apparatus

We ran experiments using a subset of the SPEC2000
benchmark suite (17 SPEC CPU benchmarks currently sup-
ported, 9 Integer and 8 FP), simulated with single SimPoints
of 100 million instructions [16], on a simulator that models
the TFlex microarchitecture. Table 4 details the simulator
configuration for one core. Unless otherwise noted, the con-
figuration used for these experiments is 16 composed cores,
which corresponds to an execution window of up to 2048 in-
structions, 512 of which may be memory instructions. The
flush penalty modeled requires between 5-13 cycles to de-
tect the misprediction, to flush the bad state, and to reini-
tiate dispatch; some additional cycles are required to refill
the pipeline.

6.2 Predictor Configurations

We compare all results to the cycle count achieved by
perfect memory disambiguation, in which loads are made
to wait only exactly as long as necessary without causing
a violation. As soon as exactly all of the stores (if any)
upon which a load is dependent have completed, the load
executes. We evaluated the following load execution strate-
gies:

1. Conservative: All loads wait until all older stores have
completed.

2. Aggressive: All loads execute as soon as their ad-
dresses are available.

3. Load-Wait: A load is predicted either dependent or not;
if it is predicted dependent, it waits on the completion
of all previous stores. This policy is essentially a CDP
with only two options (zero or all stores). The Load-
Wait predictor is distributed using the same protocol
as described in Section 5. The predictor table is reset
every 10000 blocks to prevent overly conservative load
execution as the table saturates.

4. CDP: We use the best CDP configuration, including all
of the modifications described in Section 3. We used
a prediction table size of 1031 entries per core, into
which we index usingLoadPC mod (TableSize).
Using a prime number forTableSize reduces alias-
ing and allows this modulus to be computed efficiently
in hardware [6].

5. Store Sets: We implemented a Store Sets predictor ac-
cording to the description in Chrysos and Emer’s pa-
per [2]. This implementation is ideal in that message
latencies are not modeled and access to a centralized
fetch stream and execution information is assumed.
For these experiments, we sized the centralized Store
Sets structures to be comparable with the cumulative
size of the distributed CDP structures.

6. Exclusive Collision Predictor (ECP): We also imple-
mented a version of Yoaz et al.’s Exclusive Collision
Predictor [23]. We use a tagless collision history table
(CHT) augumented with distance information. Once a
load violates, its entry in the table is marked valid and



Figure 4. Breakdown of Predictions for All Loads

continues to predict a collision until the table is cleared
(every 10000 blocks). The CHT is sized to be com-
parable to the CDP table, and we use the same hash
function to index into it. This implementation is also
ideally centralized and message latencies are not mod-
eled.

6.3 Accuracy

The graph in Figure 4 shows a breakdown of the accu-
racy of different prediction mechanisms. Each set of bars
(per benchmark) shows the breakdown for Load-Wait, CDP,
ECP, and Store Sets. Each bar represents the fraction of all
loads executed that were correctly predicted independent,
correctly predicted dependent, incorrectly predicted inde-
pendent, and incorrectly predicted dependent. An incor-
rectly predicted independent load results in a flush, while
an incorrectly predicted dependent load results in later-than-
necessary issue of the load.

On average, CDP mispredicts fewer independent loads
than do any of the other schemes. By dynamically de-
training the predictor rather than requiring an occasional
clearing of the table, it avoids becoming too conservative
as prediction histories build up.

However, when the CDP does make an overly conser-
vative prediction, it can be more costly than for Store Sets
or the ECP. If a load is predicted one-store, but no store
match ever occurs, then the load defaults to waiting for all
older stores to complete. By contrast, if Store Sets makes
an overly conservative prediction, the load will not wait for
all older stores, but only a few additional stores that mapped
to the same set. ECP will generally also not have the worst
case behavior of CDP in these situations, but is still likelyto
lose more parallelism than Store Sets. This difference is due
to the fact that Store Sets will not make loads dependent on

stores that are not in flight, while the ECP may degenerate to
essentially Load-Wait behavior as the predicted dependence
distance decreases.

The CDP mispredicts slightly more dependent loads than
the other predictors. By having most loads wait only on
one matching store, CDP may miss the rarer cases in which
there is another match coming that is not caught by the 1-2
optimization. This case will result in a violation flush. By
contrast, once a load violates, Load-Wait will force its later
instances to execute conservatively until the table is cleared,
thus never causing another violation. Store Sets will also
always synchronize loads with their previously conflicting
stores, preventing reviolations of the same load-store pairs
until the table is cleared. The ECP, like the CDP, may fail
to prevent reviolations if the control path is different forthe
next instance of a previously violating load.

Loads that are counted as correctly predicted dependent
are not all handled in the same way. For instance, when
the Load-Wait strategy forces a dependent load to wait for
all older stores to complete, the dependence was correctly
identified, but potential parallelism was still lost, sincethe
load only needed to wait for the stores upon which it was
dependent, not all stores. In this sense, the CDP may have
an advantage over other predictors in the case where a load
is correctly predicted dependent. When the CDP correctly
predicts a load to wait for one store match, the load is not
delayed needlessly past that one match. Since most depen-
dent loads conflict with only one in-flight store, this situa-
tion is not rare.

By contrast, ECP will make the load wait for all older
stores up to some point specified by the distance, which may
degenerate to all older stores in the worst case. Store Sets
is less sensitive to this situation since loads wait for spe-
cific stores, but as in-flight store sets grow large, loads may
be needlessly delayed. In particular, if a load is always de-



Figure 5. Comparison of Dependence Prediction Mechanisms

Figure 6. Predictor Performance with Increasing Window Size

pendent on one store, but this store differs across dynamic
instances of the load, Store Sets will delay the load need-
lessly, while the CDP will wake it as soon as the store match
occurs.

6.4 Performance

The graph in Figure 5 compares the performance, mea-
sured in cycles, of the predictor configurations relative to
perfect disambiguation. The best CDP protocol achieves
92% of the performance of perfect, whereas aggressive
achieves 76% and Load-Wait achieves 81%. Conservative
execution gives by far the worst performance, achieving
only 45%. Store Sets achieves 97% of perfect performance
and the ECP achieves 94%.

Since most loads match with only zero or one stores
(see Table 1), making every load wait on all previous stores
(conservative execution) is unnecessary and loses opportu-
nities for parallelism. The Load-Wait strategy only exe-
cutes a subset of load conservatively, but this approach is

still overkill, and Load-Wait performs barely better than ag-
gressive execution, despite the high cost of load violations
flushes. The CDP performs 11% better than the Load-Wait
policy while only slighly increasing the complexity of the
predictor structures.

Ideal Store Sets still outperforms the best CDP configu-
ration by 5% on average. By making loads dependent on a
specific dynamic set of in-flight stores, Store Sets can avoid
some of the pathological cases that can arise for the CDP
in which dynamic instances of a load each have a different
number of store matches. The ECP, which outperforms the
CDP by 2% on average, will also delay loads for a shorter
period of time, in the average case, than does the CDP when
it predicts loads conservative.

The CDP does outperform Store Sets and the ECP for
several benchmarks, especially those where the CDP mis-
predicts fewer independent loads. The accuracy breakdown
indicates that the CDP’s higher misprediction rate of depen-
dent loads, and subsequent violation flushes, degrades the
overall average performance.



Figure 7. Effect of Modifications on CDP Performance

The models of Store Sets and the ECP that we imple-
mented assume access to a centralized fetch and execution
stream without additional overhead. A nontrivial amount of
overhead (message latencies, broadcasting of global infor-
mation needed locally by the predictor) would be required
to distribute these prediction mechanisms in the same man-
ner as the CDP, since the needed information cannot al-
ways efficiently be made locally available. Implementing
them ideally centralized allows us to implement them as
originally described without adding distribution complexity.
This approach provides the upper bound on the performance
comparing to the CDP, which is designed for a distributed
system. Furthermore, we also model an ideal centralized
CDP, as mentioned in section 5.2, which achieves on aver-
age 94% of perfect, comparable to the ECP.

Figure 6 shows the average performance of the different
prediction schemes as the window size increases from an 8-
tile TFlex configuration (up to 1,024 instructions, up to 256
of which can be memory instructions, in flight at once) to
16-tile and 32-tile configurations. The larger the window,
the more a predictor’s performance degrades due to the is-
sues described above. With a window of up to 4,096 in-
structions, with up to 1,024 memory instructions, the CDP
(with message latencies modeled) achieves about 85% of
ideal performance. The performance of Load-Wait drops
more than that of the CDP (to 74%), since it forces all loads
predicted dependent to wait on the completion of all older
stores. As the number of memory instructions in flight in-
creases, this policy becomes more costly. At this window
size, Store Sets (ideally centralized, no message latencies)
still achieves 94% of ideal performance, but the difficulty of
supporting a distributed Store Sets-like protocol increases.

6.5 Sensitivity Studies

The graph in Figure 7 shows the performance gain from
incrementally adding the modifications described in Sec-

tion 3. Each bar in the graph includes the modifications
added in all of the bars to the left of it, with the exception
of 1-2 flip, which does not include the 0-1 flip optimization.
”Full” includes both the 0-1 and the 1-2 optimizations. Be-
tween the basic CDP protocol and the version including all
optimization, there is a 4% performance improvement.

All of the modifications to the CDP protocol (Figure 7)
improve or maintain performance across most benchmarks.
The 1-2 flip optimization sometimes slightly degrades per-
formance, as it may hold back some loads longer than nec-
essary. However, the 0-1 and 1-2 optimizations interact in
a favorable way. Table 2 indicates that on average 4.9%
of loads alternate between matching with no, one, or more
than one stores. When the 0-1 and 1-2 optimizations are
combined, loads that fall into this category are more likely
to be deferred long enough to execute safely, without having
to wait for all older stores to complete.

7 Conclusions

Previously proposed dependence predictors, such as
those of Moshovos and Sohi [11], Store Sets [2], and the
ECP [23] worked well for centralized superscalar proces-
sors, and were shown to be near ideal. Future architectures,
however, will be heavily distributed, making it difficult to
observe the single, ordered fetch stream and centralized ex-
ecution information required for these and similar designs.

This paper evaluates a new type of dependence predic-
tor, which waits for some number of matching stores or
other local events to complete before allowing a load to
issue. The main advantage of this scheme is that the pre-
diction mechanism is decoupled from reliance on observa-
tion of the fetch and execution streams. The best configu-
ration achieves 92% of oracular performance, in an instruc-
tion window of up to 2,048 instructions with up to 512 loads
or stores.



The simplicity of the CDP allows it to be easily imple-
mented in a distributed microarchitecture. Despite its sim-
plicity, it significantly outperforms another policy, Load-
Wait, which is as easy to distribute. Predictors similar to
Store Sets and the Exclusive Collision Predictor require ac-
cess to a centralized fetch stream and global execution in-
formation. CDPs use only information that is easily made
available locally, yet still achieve good performance.

CDPs may be at a disadvantage when loads are not con-
sistently dependent on the same number of stores. They are
also sensitive to overly conservative prediction, either by
predicting an independent load to wait on one store match
that never arrives, or by predicting a load to be conserva-
tive, which prevents violations, but will make any load wait
longer than it needs to (no load is dependent on all older
stores). By slightly complicating the CDP design, such as
by allowing predictions of some number of store matches
between one and all, or by using path-based or other in-
formation to address fluctuating numbers of store matches,
CDP performance may be improved further without com-
promising its ability to support fully distributed execution.

8 Acknowledgements

Robert McDonald first proposed a variant of the CDP.
This research is supported by the Defense Advanced Re-
search Projects Agency under contract F33615-01-C-4106,
by NSF CISE Research Infrastructure grant EIA-0303609,
and by the Intel Undergraduate Research Fellowship.

References

[1] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John,
C. Lin, C. R. Moore, J. Burrill, R. G. McDonald, W. Yoder, and the
TRIPS Team. Scaling to the End of Silicon with EDGE architectures.
IEEE Computer, 37(7):44–55, July 2004.

[2] G. Z. Chrysos and J. S. Emer. Memory dependence prediction using
store sets. InProceedings of the 25th Annual International Sympo-
sium on Computer Architecture, pages 142–153, 1998.

[3] Compaq Computer Corporation.Alpha 21264 Microprocessor Hard-
ware Reference Manual, July 1999.

[4] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu, M. Chen, and
K. Olukotun. The stanford hydra cmp.IEEE Micro, 20(2):71–84,
2000.

[5] E. Ipek, M. Kirman, N. Kirman, and J. F. Martı́nez. Core Fusion:
Accommodating software diversity in chip multiprocessors. In Pro-
ceedings of the 34th International Symposium on Computer Archi-
tecture, pages 186–197, 2007.

[6] M. Kharbutli, K. Irwin, Y. Solihin, and J. Lee. Using prime numbers
for cache indexing to eliminate conflict misses. InProceedings of
the 10th International Conference on High-Performance Computer
Architecture, pages 288–299, 2004.

[7] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-uniform
cache structure for wire-delay dominated on-chip caches. In Pro-
ceedings of the 12th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, pages
211–222, 2002.

[8] C. Kim, S. Sethumadhavan, M. S. S. Govidan, N. Ranganathan,
D. Gulati, S. W. Keckler, and D. Burger. Composable lightweight
processors. InProceedings of the 40th International Symposium of
Microarchitecture, 2007.

[9] A. Moshovos and G. S. Sohi. Dynamic speculation and synchroniza-
tion of data dependences. InProceedings of the 24th International
Symposium on Computer Architecture, pages 181–193, 1997.

[10] A. Moshovos and G. S. Sohi. Streamlining inter-operation memory
communication via data dependence prediction. InProceedings of
the 30th International Symposium on Microarchitecture, pages 235–
245, 1997.

[11] A. Moshovos and G. S. Sohi. Speculative memory cloakingand by-
passing.International Journal of Parallel Programming, pages 427–
456, 1999.

[12] S. Onder. Effective memory dependence prediction using specula-
tion levels and color sets. InProceedings of the 2002 International
Conference on Parallel Architectures and Compilation Techniques,
pages 232–, 2002.

[13] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. W. Keckler, and C. R. Moore. Exploiting ILP, TLP, and DLP with
the polymorphous TRIPS architecture. InProceedings of the 30th
Annual International Symposium on Computer Architecture, pages
422–433, June 2003.

[14] T. Sha, M. M. Martin, and A. Roth. Scalable store-load forwarding
via store queue index prediction. InProceedings of the 38th Interna-
tional Symposium on Microarchitecture, pages 159–170, 2005.

[15] T. Sha, M. M. Martin, and A. Roth. NoSQ: Store-Load Communica-
tion without a Store Queue. InProceedings of the 39th International
Symposium on Microarchitecture, pages 106–113, 2006.

[16] T. Sherwood, E. Perelman, and B. Calder. Basic Block Distribution
Analysis to Find Periodic Behavior and Simulation Points inAppli-
cations. InProceedings of the International Conference on Parallel
Architectures and Compilation Techniques, pages 3–14, 2001.

[17] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar pro-
cessors. InProceedings of the 22nd International Symposium on
Computer Architecture, pages 414–425, 1995.

[18] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. The STAM-
Pede approach to thread-level speculation.ACM Transactions on
Computer Systems, 23(3):253–300, 2005.

[19] S. S. Stone, K. M. Woley, and M. I. Frank. Address-indexed memory
disambiguation and store-to-load forwarding. InProceedings of the
38th International Symposium on Microarchitecture, pages 171–182,
2005.

[20] S. Subramaniam and G. H. Loh. Fire-and-Forget: Load/Store
Scheduling with No Store Queue at all. InProceedings of the 39th In-
ternational Symposium on Microarchitecture, pages 273–284, 2006.

[21] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin. WaveScalar.
In Proceedings of the 36th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pages 291–302, December 2003.

[22] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee,
J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe,and
A. Agarwal. Baring it all to software: RAW machines.IEEE Com-
puter, 30(9):86–93, September 1997.

[23] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan. Speculation techniques
for improving load related instruction scheduling. InProceedings of
the 26th International Symposium on Computer Architecture, pages
42–53, May 1999.


