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Abstract instantiated with the 21264 load-wait table [3]. Chrysod an
. Emer’s Store Sets predictor [2] achieves close to ideal per-
~ Modern processors rely on memory dependence predic-fomance, defined as each load waiting only for the exact
tion to execute load instructions as early as possible, spec stores, if any, that will forward values to the load.
ulating that they are not dependent on an earlier, unissued

store. To date, the most sophisticated dependence predic- The base assumptions under which previous depen-
tors, such as Store Sets, have been tightly coupled to thedence predictors were shown to be near-ideal have changed.
fetch and execution streams, requiring global knowledge Global wire delays have resulted in the emergence of par-
of the |n-f||ght stream of stores to Synchronize loads with titioned arChiteCtUreS, such as CMPs and tiled architec-
Speciﬁc stores. This paper proposes a new dependenc@]l‘es [22] Distributed architectures that execute Si-ngle
predictor design, called a Counting Dependence Predictor threaded code [5, 13, 18, 21, 22] without a single central-
(CDP). The key feature of CDPs is that the prediction mech- ized fetch and/or execution stream will make it challenging
anism predicts some set of events for which a particular to deploy predictors such as Store Sets, which require ob-
dynamic load should wait, which may include some num- servation of a complete and centralized stream of fetched
ber of matching stores. By waiting for local events only, instructions to synchronize loads with specific stores- Pre
this dependence predictor can work effectively in a dis- Viously proposed dependence prediction mechanisms also
tributed microarchitecture where centralized fetch and ex rely on global execution information to track the comple-
ecution streams are infeasible or undesirable. We describetion of stores that trigger the wakeup of deferred loads: Fur
and evaluate a distributed Counting Dependence Predictor thermore, these distributed architectures, with heawaly p
and protoc0| that achieves 92% of the performance of per- titioned and distributed data cache banks, may benefit from
fect memory disambiguation. It outperforms a load-wait ta- Placement of the dependence predictors at the cache banks
ble, similar to the Alpha 21264, by 11%. Idealized, central- (memory sidepredictors), even at the cost of a slight re-
ized implementations of Store Sets and the Exclusive Colli-duction in accuracy ovegxecution sideredictors. These
sion Predictor, both of which would be difficult to implement factors result in a need for new dependence predictors that
in a distributed microarchitecture, achieve 97% and 94% of Work effectively for large-window distributed microarehi
oracular performance, respectively. tectures.

This paper proposes a class of dependence predictor
) designs, calledCounting Dependence Predictof€DPs).
1 Introduction CDPs are designed to work well in distributed architec-
tures, in which a centralized fetch stream and access to some
Load dependence predictors have become a necessarglobal execution information may be infeasible. Depen-
feature in high-performance microprocessors. In high- dence predictor designs must therefore strive to make ac-
ILP superscalar cores, exploitable parallelism is cuethil curate predictions with as little remote information as-pos
if most loads cannot issue before earlier stores with unre-sible. Any needed information must be available, or easily
solved addresses. Dependence predictors speculate whictmnade available, locally to the predictor. The enabling fea-
loads are safe to issue aggressively, and which loads musture in CDPs is that the prediction mechanism is oblivious
wait for all or a subset of older stores’ addresses to resolveof the fetch stream and predicts the local events for which a
before issuing. particular dynamic load should wait. These events include
The early work on dependence predictors began with some number of matching stores and can be tracked without
Moshovos and Sohi's PC-matching predictor [9] and was complete global execution information. In one implementa-



tion of CDPs, a PC-indexed table of counters will producea  All previous work in dependence prediction has relied
state that indicates the number of matching stores for whichon a central point of fetch to build tables, and/or the abil-
a dynamic load should wait: zero (aggressive€)(already ity to observe a centralized execution stream to track event
arrived or arriving later), or all of them (conservativee-B needed to wake deferred loads. Predicting loads to be de-
cause any earlier store to the same address is consideregendent on specific stores requires knowing which stores
a match for a load, rather than waiting on some specific are in flight and when they complete, and thus observing
store that was fetched, the predictor mechanism is decou-<centralized fetch and execution streams, which becomes in-
pled from reliance on the fetch stream. If deferred loads arefeasible or undesirable for large-window distributed &rch
held at their cache bank, information about matching storestectures. These requirements make it difficult to distebut

will be available locally. the predictors efficiently.
-We evaluate CDPSln the Con-text of the TFlex microar- Ear|y work on dependence predictors by Moshovos and
chitecture [8], a fully distributed tiled architecture tisaip-  Sohi identified the potential of memory speculation for out-

ports an issue width of up to 64 and an execution window of of-order processors. They proposed a predictor that identi
up to 4,096 instructions. Since control decisions, ingtomc  fijeqd recurring RAW memory violations using two CAM ta-
issue, and dependence prediction may all happen on differples [9], one for static and the other for dynamic load-store
enttiles, a distributed protocol for handling efficientdep  pairs. When a load violation occurs, entries are allocated i
dence prediction is necessary. This paper describes such ghe static table. When a memory instruction executes, if it
protocol and shows how distributed dependence predictionfinds an entry in the static table, it find or allocates an entry
can be efficiently run on an aggressive processor with onlyjn the dynamic table. A load with an active entry (or entries,
small losses in performance (1-2%) over an ideal, central-if multiple dependences are supported) must wait for the
ized CDP with no routing latencies. corresponding store(s) to complete before executing. This
The ideas behind CDPs are applicable to any architec-scheme requires the ability to track the completion of every
ture with distributed fetch and distributed memory banks, store globally, which is difficult to implement efficiently i
in which the comprehensive event completion knowledge g distributed environment, where stores may map to differ-
needed by previous dependence predictors is costly to makent processing tiles.
available globally. We describe a specific control protocol
implementation for TFlex, but this implementation may dif-
fer for other architectures with different state.

Moshovos and Sohi’s later work [10] uses a prediction
scheme that assigns a common tag to all dependences that
: i ) i have common producers (stores) or consumers (loads). The

The best-performing CDP configuration achieves 92% v, s sed to identify all of these dependences collegtivel
of oracular performance, showing only small performance ,,q yhe correct association between a load and a store is en-
drops due to the routing latencies of the distributed pre- ¢, .o hased on which store is in flight. Chrysos and Emer's

diction protocol. _AS_ a point of comparison, a Qistributeg Store Sets predictor identifies sets of matching loads and
load-wait table, similar to the Alpha 21264, achieves 81% stores, making dependent loads wait on particular depen-

of ideal performance. Idealized, centralized implementa- dent stores [2]. When a load is fetched, it acquires a store

gpns of Srtlpre Seti and;(oazoet ?I'S Exclluswe fCoII|S|onPre set ID and uses it to determine the most recently fetched
ictor achieve 97% and 94% of oracular performance, re- e in the same set, upon which the load is made depen-

spectively. Of these predictors, only Load-Wait is str&igh dent. When stores are fetched, they go through the same
forward to implement in a distributed environment, as it is process, serializing stores in the same set. Both of these
ess_ef‘“a”y a simplified Version of the CDP. Although '€~ schemes require observation of the fetch stream to build up

maining performance can be mined from large-window dis- ¢ e diction tables. Loads depend on specific older stores
tributed dependence prediction, the CDP designs evaluategy, ¢ gre in flight, and these dependences are marked as the
in this paper outperform Load-Wait by 11%. stores are fetched. Access to global execution information

_ o is also necessary to track the completion of stores.
2 Related Work in Dependence Prediction Yoaz et al. developed a much simpler but still effective

predictor based on distances between dependent loads and
According to Onder’s proposed classification [12], de- stores [23]. In its simplest form, their collision histomrt
pendence predictors are typically independence predictor ble (CHT) works like a load-wait table, holding back loads
that predict zero matches very well, pair predictors that ar predicted dependent until all older stores have completed.
tuned for predicting exactly one matching store, and set The inclusion of dynamic distances between a load and the
predictors that aim to capture more intricate load/stote pa store with which it collides allows loads to be advanced past
terns. Counting Dependence Predictors are a hybrid thatsome but not all stores in flight. The distance with which the
can switch between these classes of predictors dependingpad’s CHT entry is annotated will converge to the smallest
on the program workload. distance seen as the load violates with other stores. The dis



Bench- No Matches One Match Two+ Matches Bench- no one | two+ 0,1 | 1,2+ | 0,2+ | 0,1,2+
mark static | dynamic | static | dynamic | static | dynamic mark match | match | match | flip flip flip flip
bzip2 64.2 93.3 20.8 6.7 15.1 0.0 bzip2 67.6 0.0 0.0 8.8 0.0 0.0 23.5
crafty 81.4 95.8 14.5 4.1 4.1 0.1 crafty 82.2 0.3 0.0 | 125 0.2 0.0 4.7
gcce 79.4 99.9 | 152 0.1 5.3 0.0 gce 81.1 1.2 00| 111 0.3 0.0 6.3
gzip 72.3 92.1 20.0 7.2 7.7 0.7 gzip 72.4 0.0 0.0 ]| 17.1 0.2 0.0 10.3
mcf 71.1 98.2 | 223 1.8 6.6 0.0 mcf 68.6 0.0 0.0 | 221 0.0 0.0 9.2
parser 79.4 90.7 14.0 8.5 6.6 0.8 parser 82.3 0.0 0.0 9.4 0.0 0.0 8.3
perlbmk 79.8 86.8 18.4 12.8 1.8 0.4 perlbmk 77.3 1.4 0.0 | 19.2 0.0 0.0 2.2
twolf 88.8 95.8 8.9 4.2 2.3 0.0 twolf 90.0 0.1 0.0 7.3 0.0 0.0 2.6
vortex 80.6 90.3 | 16.1 9.5 3.2 0.2 vortex 80.1 15 00 | 144 0.5 0.2 3.2
applu 78.1 875 | 212 12.5 0.7 0.0 applu 73.1 0.9 0.0 | 25.0 0.0 0.0 0.9
apsi 90.4 96.7 9.0 3.3 0.6 0.0 apsi 90.0 0.0 0.0 9.2 0.0 0.0 0.7
art 96.8 99.8 2.7 0.2 0.5 0.0 art 97.3 0.8 0.0 1.4 0.3 0.0 0.3
mesa 82.2 93.5 15.7 5.7 2.2 0.9 mesa 81.0 0.2 0.0 | 16.2 0.0 0.0 2.6
mgrid 85.5 98.9 13.1 0.4 1.4 0.6 mgrid 84.9 1.4 0.0 | 12.0 0.0 0.0 1.6
sixtrack 77.1 90.2 20.5 9.4 2.4 0.4 sixtrack 73.6 0.6 0.0 | 22.7 0.0 0.0 3.1
swim 100.0 100.0 0.0 0.0 0.0 0.0 swim 100.0 0.0 0.0 0.0 0.0 0.0 0.0
wupwise 77.5 25.3 19.1 62.1 3.2 12.6 wupwise 75.6 1.0 0.0 | 19.0 0.0 0.0 4.4
average 81.5 90.3 14.8 8.7 3.8 1.0 average 81.0 0.6 0.0 | 134 0.1 0.0 4.9
Table 1. Breakdown (Percent) of Store Matches for Static Table 2. Breakdown (Percent) of Dynamic Behavior of
and Dynamic Loads in SPEC2000 benchmarks: Most loads Static Loads in SPEC2000 benchmarks: Most static loads
conflict with one or fewer in-flight stores. This and table 2 never conflict with any in-flight stores across their dynamic
were generated with a 16-core TFlex configuration , with up instances; if they do, they usually flip between zero and one
to 2048 instructions in flight, 512 of which can be memory store match.

instructions.

In addition, while the block-atomic nature of the ISA
tances are based on load and store ages, which are generallysed by TFlex simplifies some components of the protocol,
stamped at fetch, making it difficult to support distributed this technique could be employed with other ISAs by arti-
fetch. This predictor also poses a challenge for distridbute ficially creating blocks from logical blocks in the program

execution, as the completion of each store must be trackedor the sake of simplified store completion tracking.
to determine when all stores a given distance away from a

deferred load have completed. 3
Several researchers have adapted these designs. Notably,
Sha, Martin and Roth enhanced the Store Sets predictor
with path based information and proposed training on both ~ Counting Dependence Predictors predict the events for
violations and forwardings [14]. Similarly, Subramaniam Which a particular dynamic load should wait. These events
and Loh extended the distance predictor with partial tagsmay include some number of arbitrary matching stores,
and confidence estimates to improve its accuracy even fur_ra.ther than SpeCiﬁC stores identified before execution. In
ther [20]. This follow-on work has included several LSQ this section, we present data that indicates that it is possi

optimizations [14, 15, 19, 20] and direct load-store commu- ble to predict how many in-flight stores a load will conflict
nication [11]. with and a possible CDP implementation that predicts loads

to wait for zero, one, or more store matches.

Counting Dependence Prediction

2.1 Applicability to Distributed Architectures
3.1 Store-Load Dependence Behavior
Though we describe a distributed CDP protocol tailored

specifically for the TFlex microarchitecture, other design Table 1 shows a breakdown of the number of in-flight
can also benefit from the simplicity of the CDP [4, 5, 17, matching older stores for each load, measured with an ex-
18, 21, 22]. For example, the protocol described in Sec- ecution window of up to 512 memory instructions. Static
tion 5 can easily be adapted for Core Fusion [5] by giving loads are identified uniquely by their PC. A given static
its steering management unit (SMU) the responsibilities of load may be executed more than once, and the "dynamic”
the controller core. While Ipek et al. describe how a Store columns refer to these dynamic instances of static loads. Fo
Sets implementation would be possible [5], their prefeeenc example, 72.3% of gzip’s static loads have no store matches
for the simplicity of per-core load-wait tables is a testaime in at least some of their dynamic instances, but 92.1% of the
to the difficulty of distributing a predictor that requires i dynamic instances during the execution of the program con-
formation not easily or cleanly made globally available. flict with no stores. Most load instructions conflict with no



1 #define s1ze 100

2

3 void mainQ)

4 {

g int x = 0; inty, k, i; Case #1: Two Matches | Case #2: One Match Case #3: Early Match

7 int A[2*%SIZE];

8 int B[SIZE]; i=2 i=3 i=3

9

10 for( i =0; i < SIZE; i++ )

E Execution order: Execution order: Execution order:
y =1

13 if(i%2==0) Load C (from i) Load C (from i) Store A (to i)

14 k =1; Store A (to i) Store A (to i) Store B (to i + SIZE)

15 else Store B (to i) Store B (to i + SIZE) Load C (from i)

16 k = i + SIZE;

17

18 Aly]l = y; //Store A

19 A[k] = k; //Store B

20 x += A[i]; //Load C

21

22}

Figure 1. Load C matches different numbers of stores in differentsdsethe first two cases, unless the load waits long enough, a
violation will occur because the load executes too earlythinlast case, the matching store executes correctly béferkad.

in-flight stores and can safely be executed as soon as theiStores A and B in program order. Load C will always be
address is available. Of the loads that must wait for datadependent on Store A, but whether or not it is also depen-
from one or more stores before executing, most depend ordent on Store B depends on the valué.ofhe three cases
only one in-flight store. A minority of static loads (3.8% on in Figure 1 show different ordering possibilities during th
average), and even fewer dynamic instances (1.0% on av-execution of the code. The states of one possible CDP, out-
erage), must wait for two or more stores before executinglined in Table 3, are designed to handle all of these cases
safely. and to transition among them.

Table 1 does not distinguish among loads that have dif-
ferent behavior across dynamic instances. Table 2 shows 8.2 Prediction Types
breakdown of the dynamic behavior of static loads. Each
percentage indicates what fraction of static loads have dy- When aload is predicted dependent, it must be woken by
namic instances that exhibit the behavior of that column. some triggering event, as defined by the predictor. Various
For example, 72.4% of gzip’s static loads match with no information, such as the control path, the load’s PC, or its
stores every time they are executed, and 17.1% of the stati@ddress can be used to predict which event should cause a
loads dynamically alternate between zero and one match{oad to issue. In a distributed architecture, this inforiorat
ing stores. According to these data, most static loads will would ideally be either locally available or globally bread
never alias with any in-flight stores and thus each dynamiccast for other purposes. CDPs aim to use as little additional
instance of that load can safely be executed as soon as its ademote messaging as possible to predict the type of event
dress is available. Few loads always alias with a consistenthat should cause a load to be woken.
number of stores, instead flipping between zero or more. The states of one possible CDP are outlined in Table 3.

These data indicate that it is possible to predict when it Different prediction types are defined by the event type that
is safe to execute a given load by predicting for how many triggers the load wakeup:
store matches that load should wait. Counting Dependence ) )
Predictors wait for a learned number of stores to complete 1. Anaggressiveload can execute speculatively as soon
before waking a load predicted to be dependent. Unlike as its address is available.
many previous dependence predictors, CDPs do not predict
dynamic loads to be dependent on one or more specific dy-
namic stores, but rather on a predicted number of arbitrary

2. Conservativdoads must wait until all previous stores
(in program order) have completed.

stores.
A load violation occurs when a load executes before an = State Event Waiti”g for
. . ] ggressive one
older store to the same address. When such a violation is | ¢ ative Completion of all previous stores
detected, the pipeline must be flushed. Figure 1 shows how N-store | N matching stores arriving before or after load

a given static load may conflict with a different number

of stores dynamically. In the code given, Load C follows Table 3. Overview of CDP States



e Aggressive If a load was issued aggressively but
should have waited for an older store, a dependence
violation flush is triggered. The load’s corresponding
predictor table entry is set to conservative.

2bits o flush

matches =0
aggressive one-store
(00) (o1)
g W

f(load_PC)

1

e Conservative As a load predicted conservative waits
for all older stores to complete, the number of older
stores that execute and conflict with the deferred load
are counted, and the corresponding entry in the predic-
tion table is updated if the count shows the conserva-
tive execution to have been overkill (i.e. fewer than
two store matches were counted).

flush

conservative! one-store
(11) (10)

' matches <=1 ‘

matches > 1 matches = 1

matches

predictor table

e N-store In a basic CDP implementation, when a

Figure 2. CDP Dependence Table and State Machine: A load is predicted N-store, the number of older match-
load hashes into the predictor table with its PC, interpmeti ing stores that execute while the load waits are also
the value found there as one of the states shown. The states counted, and when this number reach&she load is

are updated based on load behavior. free to execute. If the number of actual store matches

does not reaclv, the load is effectively treated as con-
servative since it has to wait needlessly for all older
stores to complete. In this case, the dependence pre-
dictor is de-trained. The presence of two one-store
states in the implementation described here decreases
the sensitivity of the predictor. We use this version of
N-store as the baseline for the evaluation in this paper,
but these two states could represent separate predic-
tions of some number of stores or some other event
used to trigger load wakeup. We discuss slightly dif-
ferent treatments of the N-store state in the next sub-
section.

3. N-storeloads wait for a learned number of arbitrary
matching older stores. In the implementation de-
scribed here, loads predicted in this third category wait
on any one store match (i.e/N equals one). Be-
cause the load’s address must be resolved before store
matches can be counted, the load issues to memory and
waits at the data cache for its wakeup event.

The third type of prediction raises the question of what
constitutes a store-match event. The assumption in the pro-
tocol description above was that a store match happen . T
when a store to the same address resolves after a waitin}'4 CDP State Machine Optimizations
load. However, the particular store on which a load is de- ] ]
pendent may resolve after the load instead. Therefore, we When the number of matching stores varies among dy-
also evaluated a policy, calleglready arrived storesin namic instances of a given static load, the CDP can be at

which loads that are predicted to be dependent on one storé disadvantage, because the predictor state may fluctuate
are woken immediately if a matching store still in flight has Paséd on the repeated mispredictions and subsequent up-

already resolved. By waking one-store loads based on thedates of the table. We experimented with other modifica-
presence of an already issued older store that is likely to belions to determine what information may help the predictor

the load’s only store match, we reduce the number of costly dentify the correct number of stores in such cases.

cases in which a load is incorrectly predicted one-store and  SPecifically, aload might alternate between being depen-
needlessly waits for all older stores to complete. By con- d€nt on zero or one store(s), causing an unneccesarily con-
sidering early arriving stores, we wake one-store loads angservative load execution half of the time and a violation the

train the dependence predictor on store-to-load forwasdin other half. Similarly, a load might alternate between being
dependent on one or two (or more) stores.

To address the 0-1 case, we modified the CDP to record
some bits of the store’s PC when a load violates. When
the next instance of this load is predicted one-store, the pr

The predictor is a simple table hashed by load PC thatdictor checks if an older instance of the offending store is
contains 2-bit values representing one of the three states d in flight. If not, the load is allowed to issue aggressively,
scribed in the previous subsection. The table is initidlize assuming it will not alias with another static store. This
with each entry in the aggressive state and is updated acpolicy aims to reduce the cases where an independent load
cording to subsequent load behavior, as shown in Figure 2.is predicted one-store and defaults to waiting for all older
The following describes the behavior of each state: stores to complete because no store match ever occurs. This

3.3 Wakeup and Training Policies



optimization requires additional space (for the bits of the go to the same memory core, dependence violations are de-
store PC) and can also cause incorrect predictions in thetected by the load-store queue at that cache bank. Before
less common case where the load’s next dynamic instancecommitting the block, the owner core must receive comple-
is dependent on a different static store. tion confirmations of stores, register writes, and one tranc
We address the 1-2 case in a similar way. When a match-from all participating cores. Once the block is ready to com-
ing store prompts the wakeup of a load predicted one-storemit, the owner sends a commit message to each participat-
a check is done to see if there are any stores with the saméng core and waits for acknowledgements. All control, data
PC in flight between the store match and the load. If so, request and response, and operand communication among
the wakeup of the load is deferred. This policy approxi- cores uses a number of two-dimensional wormhole-routed
mates the aspect of Store Sets which serializes all in-flightmeshes.
stores belonging to a given store set and makes the load de- Each block owner has the PCs of all in-flight blocks
pendent on the last of these stores. This optimization doesavailable. This information allows the 0-1 and 1-2 flip CDP
not require additional storage area, but may in some case®ptimization described in the previous section to be imple-

needlessly delay the load’s execution. mented efficiently by simply checking whether another in-
flight block has the same block PC as the block of the store
4 TFlex in question.

We simulate and evaluate CDPs on the TFlex microar-9 A Distributed CDP Protocol
chitecture [8], a Composable Lightweight Processor (CLP),
that allows simple cores, also called tiles, to be aggreate  Because CDPs use as little information as possible to
together dynamically. TFlex is a fully distributed tiled-ar make predictions—in particular, they do not need to follow
chitecture of 32 cores, with multiple distributed loadrsto  all stores in the fetch stream—they are more amenable to op-
banks, that supports an issue width of up to 64 and an execueration in a distributed environment. The problems of con-
tion window of up to 4096 instructions with up to 512 loads firming correctness of speculations and knowing when all
and stores. Since control decisions, instruction issud, an stores previous to a given load have completed remain. A
dependence prediction may all happen on different tiles, anumber of additional control messages, as described in this
distributed protocol for handling efficient dependence pre section, are required for correct operation.
diction is necessary. Here we give necessary background There are three goals to consider when designing a dis-
information about the TFlex architecture upon which the tributed protocol: few control messages, few control mes-
protocol of the next section is based. sage types (i.e., low protocol complexity), and low latency
The TFlex architecture uses the TRIPS Explicit Data on the critical path. The distributed CDP protocol we de-
Graph Execution (EDGE) ISA [1] which encodes programs scribe achieves all of these goals.
as a sequence of blocks that have atomic execution seman-
tics, meaning that control protocols for instruction fetch 5.1 Distributed Protocol
completion, and commit operate on blocks of up to 128 in-

structions. _ _ _ Figure 3 lists the message types and stages of prediction
The TFlex microarchitecture has no centralized microar- isribyted among different processing cores. The prdtoco

chitectural structures. Structures across participaloTgs ey ires four message types, including three not in the base

are partitioned based on address. Each block is assigneggjay design. The prediction and wakeup of a load are han-

an owner core based on its starting address (PC), instrucyjeq py the protocol as follows. Each of these operations
tion within a block are partitioned across participatingsso may occur on any core, which may be the same in some
based on instruction IDs, and the load-store queue (LSQ).5qeg '

and data caches are partitioned based on load/store data ad-

dresses. ~ 1. Aload is issued at one core (cdrén Figure 3) , and
pating cores. The block owner core is responsible for initi- bank, determined by the address of the load.

ating fetch and predicting the next block. Once predicted,

the next-block address is sent to the owner core of the pre- 2. Prediction occurs at the core containing that cache
dicted next block. When a memory instruction executes, it bank (core6, in this example). If a load is predicted
is sent to the appropriate core’s cache bank based onits tar-  aggressive, it executes immediately. If it is predicted to
get address. Pipeline flushes due to misspeculations are als be dependent (either conservative or waiting on some
initiated by the owner of the block causing the misspecula- events), aegistration messages sent to the controller
tion. Since loads and stores to the same address will always  core, the block owner of the load’s block (cdre The



(4) All previous
(5) St I
I S I A I cok 3 : conservatively because no store match ever occurs).
: Block N's Block Ne1'd Store Y's : Because a memory instruction’s cache bank is deter-
P control control et — mined by its address, matching stores will always ar-
: p %%, : rive at the core where the load is waiting. Thus, if there
2 0, . -
/O%@ %%:v : were N matches for an N-store load, that load will al-
2o, :
%fo% & | @ Prediction : ready have been woken when the wakeup message ar-
C Load X g Lf:rdgzt’s | rives. In this case, the wakeup message can safely be
: fssues core : ignored. If two matching stores arrive in program or-
cor’e4 cor‘eS ) Load cor’eé cov‘e7 : der after a later dependent load has issued, the first will
..................................................................... : wake the load and the second will trigger a violation
8-core composed processor ﬂUSh.
One all-stores-completed message must be sent per
Figure 3. Distributed Counting Dependence Predictor 128-instruction block, and two messages (registration and
Protocol: Simple control messages between processing Wakeup) must be sent for each load predicted to be depen-
cores are used to implement dependence prediction. dent on unarrived older stores. Loads correctly predicted

. The controller core is responsible for sendimakeup

independent require no messages at all. In our experiments,
each load requires the sending of only 0.28 control mes-
sages, on average. We found that the message latencies
have only small effects on overall performance, since most
can be hidden by execution. The case when message la-

registration message is a request to the block owner to
inform the load when all older stores have completed.

3. To enable the block’s controller core to know when all tency can lead to performance loss is when a load on the

stores prior to a particular load have completed, two critical path is predicted conservative and needs to wait fo
additional types of messages are needed. First, whenthe wakeup message before knowing that all older stores
ever a store in the block completesstare completion ~ have completed. For the best-performing CDP configura-
messagés sent from the core containing its cache bank tion, removing the message latencies improves performance
back to the controller core. Store completion messagesby only 1% on average.
do not need to be added specifically for the purpose of
dependence prediction, as they are already necessarp.2 Execution vs. Memory Side
for determining block completion.

The distributed protocol described above implements de-

. Before a registered load can be safely woken, the CoN-pendence prediction on the memory side, after a load has

troller core must know that all stores older than that pheen jssued and sent to the core containing its cache bank.
load have completed. It is not sufficient to know | ga4s index into the predictor table at that core. Alterna-
that all older stores in the load’s block have com- yely prediction could occur on the execution side, befor
pleted, since there may be pending stores in olderhe |oad issues. The advantage of this placement is that the
blocks.  Thus, anall-stores-completed message  taple is indexed by the load’s PC, rather than a combination
needed, which block owne¥ sends to block owner o the PC and address. However, execution-side prediction
N +1as soon as all of the stores in blabkhave com-\yjj| require a more complex protocol with additional mes-
pleted. This single message sent between controllersaging for little gain.

cores of successiv_e blocks prevents the need to broad- 15 model the effect of placing the predictor table on the
cast store completion messages to every core. execution side, we approximated execution-side predictio
by having all loads index into an ideally centralized predic
tor table. This idealized experiment improves CDP perfor-

any load which was not predicted aggressive). As soonMmance by 2% over the best performing memory-side imple-
as all stores older than a registered load have com-mentation, but does not model the effects of complicating

pleted, the controller core sends a wakeup messagéhe distributed protocol or splitting the prediction tablg

back to the core containing the cache bank at which 0"€S:
the load is waiting.

message$o any load that has registered with it (i.e.

5.3 Distribution of other Dependence Predictors

. When a waiting load receives a wakeup message, it

is free to execute. The wakeup message is required Moshovos and Sohi [9] describe how their predictor can
for loads predicted conservative and loads incorrectly be distributed by replicating the CAM tables at every pro-



Parameter Configuration |

Instruction Supply| Partitioned 8KB I-cache (1-cycle hit); Local/Gshare Tament predictor (8K+256 bits, 3 cycle latency) with spetivaa
updates; Num. entries: Local: 64(L1) + 128(L2), Global: 5Choice: 512, RAS: 16, CTB: 16, BTB: 128, Btype: 256.
Execution Out-of-order execution, RAM structured 128-entry issurdeiw, dual-issue (up to two INT and one FP).

Data Supply Partitioned 8KB D-cache (2-cycle hit, 2-way set-assoaqtil-read port and 1-write port); 64-entry LSQ bank; 108tye
CDP; 4MB decoupled S-NUCA L2 cache [7] (8-way set-assom@ati RU-replacement); L2-hit latency varies from 5 cycles
to 27 cycles depending on memory address; average (unlpeded memory latency is 150 cycles.

Simulation Execution-driven, validated in TRIPS-like configuratianbie within 7% of TRIPS prototype hardware cycle counts.
Benchmarks 17 SPEC CPU benchmarks currently supported (9 Int, 8 FPylated with single SimPoints of 100 million instruction$]1

Table 4. Single Core TFlex Microarchitecture Parameters

cessing tile. Because this approach requires the broadcas6.2 Predictor Configurations

ing of information to keep the tables synchronized and to

wake loads, it is difficult to scale it efficiently to 8 or 16 We compare all results to the cycle count achieved by
nodes. perfect memory disambiguation, in which loads are made

Moshovos and Sohi’s later predictor [10] is similar in to wait only exactly as long as necessary without causing
concept to Store Sets and poses a similar challenge to efa violation. As soon as exactly all of the stores (if any)
fective distribution. Store Sets [2], as discussed befisre, upon which a load is dependent have completed, the load
tightly coupled with the fetch stream. Loads and stores executes. We evaluated the following load execution strate
are assigned a store set as they are fetched, allowing loadgies:
to be made dependent on specific stores and stores within ) ) )
the same set to be serialized. This approach also requires 1. ConservativeAll loads wait until all older stores have
tracking events that may not occur in the same place in the ~ completed.
microarchitecture, making distributed execution difftas 2
well.

Distance predictors such as that of Yoaz et al. [23] re-
quire that memory instructions each be assigned relative 3. Load-Wait Aload is predicted either dependentor not;
ages, typically at fetch/decode. Loads are then made towait  if it is predicted dependent, it waits on the completion
on stores a certain distance (in dynamic instructions) away ~ Of all previous stores. This policy is essentially a CDP
This scheme requires tracking specific stores in flight. Thus ~ with only two options (zero or all stores). The Load-

. Aggressive All loads execute as soon as their ad-
dresses are available.

it is insufficient to know that all stores belonging to con- Wait predictor is distributed using the same protocol

troller cores of previous blocks have completed, sinced loa as described in Section 5. The predictor table is reset
in a given block may be waiting on a store in the middle of a every 10000 blocks to prevent overly conservative load
previous block. A straightforward implementation reqaire execution as the table saturates.

the broadcasting of store completion information, whereas

the CDP requires only one point-to-point message per store. 4. CDP: We use the best CDP configuration, including all

of the modifications described in Section 3. We used
a prediction table size of 1031 entries per core, into
6 Experimental Results which we index usingLoad PC mod (T'ableSize).
Using a prime number fol'ableSize reduces alias-

) ing and allows this modulus to be computed efficiently
6.1 Experimental Apparatus in hardware [6].

5. Store SetsWe implemented a Store Sets predictor ac-
cording to the description in Chrysos and Emer’s pa-
per [2]. This implementation is ideal in that message
latencies are not modeled and access to a centralized
fetch stream and execution information is assumed.
For these experiments, we sized the centralized Store
Sets structures to be comparable with the cumulative
size of the distributed CDP structures.

We ran experiments using a subset of the SPEC2000
benchmark suite (17 SPEC CPU benchmarks currently sup-
ported, 9 Integer and 8 FP), simulated with single SimPoints
of 100 million instructions [16], on a simulator that models
the TFlex microarchitecture. Table 4 details the simulator
configuration for one core. Unless otherwise noted, the con-
figuration used for these experiments is 16 composed cores,
which corresponds to an execution window of up to 2048 in-
structions, 512 of which may be memory instructions. The 6. Exclusive Collision Predictor (ECP)Ne also imple-

flush penalty modeled requires between 5-13 cycles to de- mented a version of Yoaz et al.'s Exclusive Collision
tect the misprediction, to flush the bad state, and to reini- Predictor [23]. We use a tagless collision history table
tiate dispatch; some additional cycles are required td refil (CHT) augumented with distance information. Once a

the pipeline. load violates, its entry in the table is marked valid and



O independent predicted correct

W dependent predicted correct Bars from left to I’ig ht:

Bindependent predicted incorrect

B dependent predicted incorrect Load-Wait, CDP, ECP, Store Sets

0.95
0.9
0.85
0.8
0.75
0.7
0.65

Fraction of Loads

SPECINT SPEC 2000 Benchmarks SPECFP

Figure 4. Breakdown of Predictions for All Loads

continues to predict a collision until the table is cleared stores that are notin flight, while the ECP may degenerate to
(every 10000 blocks). The CHT is sized to be com- essentially Load-Wait behavior as the predicted deperalenc
parable to the CDP table, and we use the same hasldistance decreases.

function to index into it. This implementationis also  The CDP mispredicts slightly more dependent loads than
ideally centralized and message latencies are not mod+ne other predictors. By having most loads wait only on

eled. one matching store, CDP may miss the rarer cases in which
there is another match coming that is not caught by the 1-2
6.3 Accuracy optimization. This case will result in a violation flush. By

contrast, once a load violates, Load-Wait will force itetat
The graph in Figure 4 shows a breakdown of the accu- instances to execute conservatively until the table isetba

racy of different prediction mechanisms. Each set of bars US never causing another violation. Store Sets will also
(per benchmark) shows the breakdown for Load-Wait, CDP, always synchrqmze Io_ads_W|th their previously confllctlng
ECP, and Store Sets. Each bar represents the fraction of af{o"eS: preventing reviolations of the same load-stonspai
loads executed that were correctly predicted independent,um'I the table is cleared. The ECP, like the CDP, may fail
correctly predicted dependent, incorrectly predicteceind to prevent reviolations |_f the co_ntro! path is different fbe
pendent, and incorrectly predicted dependent. An incor- Nextinstance of a previously violating load.
rectly predicted independent load results in a flush, while  Loads that are counted as correctly predicted dependent
anincorrectly predicted dependentload resultsinldtent ~ are not all handled in the same way. For instance, when
necessary issue of the load. the Load-Wait strategy forces a dependent load to wait for
On average, CDP mispredicts fewer independent loadsall older stores to complete, the dependence was correctly
than do any of the other schemes. By dynamica"y de- identified, but potential parallelism was still lost, sirnbe
training the predictor rather than requiring an occasional load only needed to wait for the stores upon which it was
clearing of the table, it avoids becoming too conservative dependent, not all stores. In this sense, the CDP may have
as prediction histories build up. an advantage over other predictors in the case where a load
However, when the CDP does make an overly conser-is correctly predicted dependent. When the CDP correctly
vative prediction, it can be more costly than for Store Sets Predicts a load to wait for one store match, the load is not
or the ECP. If a load is predicted one-store, but no store délayed needlessly past that one match. Since most depen-
match ever occurs, then the load defaults to waiting for all dent loads conflict with only one in-flight store, this situa-
older stores to complete. By contrast, if Store Sets makestiOn IS notrare.
an overly conservative prediction, the load will not wait fo By contrast, ECP will make the load wait for all older
all older stores, but only a few additional stores that mappe stores up to some point specified by the distance, which may
to the same set. ECP will generally also not have the worstdegenerate to all older stores in the worst case. Store Sets
case behavior of CDP in these situations, but is still likely  is less sensitive to this situation since loads wait for spe-
lose more parallelism than Store Sets. This differenceés du cific stores, but as in-flight store sets grow large, loads may
to the fact that Store Sets will not make loads dependent onbe needlessly delayed. In particular, if a load is always de-
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Figure 5. Comparison of Dependence Prediction Mechanisms
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Figure 6. Predictor Performance with Increasing Window Size

pendent on one store, but this store differs across dynamicstill overkill, and Load-Wait performs barely better thag a
instances of the load, Store Sets will delay the load need-gressive execution, despite the high cost of load violation
lessly, while the CDP will wake it as soon as the store match flushes. The CDP performs 11% better than the Load-Wait

occurs. policy while only slighly increasing the complexity of the
predictor structures.
6.4 Performance Ideal Store Sets still outperforms the best CDP configu-

ration by 5% on average. By making loads dependent on a

The graph in Figure 5 compares the performance mea-SPecific dynamic set of in-flight stores, Store Sets can avoid
sured in cycles, of the predictor configurations relative to S0mMe of the pathological cases that can arise for the CDP
perfect disambiguation. The best CDP protocol achievesin Which dynamic instances of a load each have a different
92% of the performance of perfect, whereas aggressivenumber of store matches. The ECP, which outperforms the

achieves 76% and Load-Wait achieves 81%. ConservativecDP by 2% on average, will also delay loads for a shorter
execution gives by far the worst performance, achieving _perlod_of time, in the average case, than does the CDP when
only 45%. Store Sets achieves 97% of perfect performancdt Predicts loads conservative.
and the ECP achieves 94%. The CDP does outperform Store Sets and the ECP for
Since most loads match with only zero or one stores several benchmarks, especially those where the CDP mis-
(see Table 1), making every load wait on all previous stores predicts fewer independent loads. The accuracy breakdown
(conservative execution) is unnecessary and loses opportuindicates that the CDP’s higher misprediction rate of depen
nities for parallelism. The Load-Wait strategy only exe- dent loads, and subsequent violation flushes, degrades the
cutes a subset of load conservatively, but this approach isoverall average performance.
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Figure 7. Effect of Modifications on CDP Performance

The models of Store Sets and the ECP that we imple-tion 3. Each bar in the graph includes the modifications
mented assume access to a centralized fetch and executioadded in all of the bars to the left of it, with the exception
stream without additional overhead. A nontrivial amount of of 1-2 flip, which does not include the 0-1 flip optimization.
overhead (message latencies, broadcasting of globat infor "Full” includes both the 0-1 and the 1-2 optimizations. Be-
mation needed locally by the predictor) would be required tween the basic CDP protocol and the version including all
to distribute these prediction mechanisms in the same man-optimization, there is a 4% performance improvement.
ner as the CDP, since the needed information cannot al- All of the modifications to the CDP protocol (Figure 7)
ways efficiently be made locally available. Implementing improve or maintain performance across most benchmarks.
them ideally centralized allows us to implement them as The 1-2 flip optimization sometimes slightly degrades per-
originally described without adding distribution complgx formance, as it may hold back some loads longer than nec-
This approach provides the upper bound on the performanceessary. However, the 0-1 and 1-2 optimizations interact in
comparing to the CDP, which is designed for a distributed a favorable way. Table 2 indicates that on average 4.9%
system. Furthermore, we also model an ideal centralizedof loads alternate between matching with no, one, or more
CDP, as mentioned in section 5.2, which achieves on averthan one stores. When the 0-1 and 1-2 optimizations are
age 94% of perfect, comparable to the ECP. combined, loads that fall into this category are more likely

Figure 6 shows the average performance of the differentto be deferred long enough to execute safely, without having
prediction schemes as the window size increases from an 8+o wait for all older stores to complete.
tile TFlex configuration (up to 1,024 instructions, up to 256
of which can be memory instructions, in flight at once) to .
16-tile and 32-tile configurations. The larger the window, 7 Conclusions
the more a predictor’s performance degrades due to the is-
sues described above. With a window of up to 4,096 in-  Previously proposed dependence predictors, such as
structions, with up to 1,024 memory instructions, the CDP those of Moshovos and Sohi [11], Store Sets [2], and the
(with message latencies modeled) achieves about 85% oECP [23] worked well for centralized superscalar proces-
ideal performance. The performance of Load-Wait drops sors, and were shown to be near ideal. Future architectures,
more than that of the CDP (to 74%), since it forces all loads however, will be heavily distributed, making it difficult to
predicted dependent to wait on the completion of all older observe the single, ordered fetch stream and centralized ex
stores. As the number of memory instructions in flight in- ecution information required for these and similar designs
creases, this policy becomes more costly. At this window  This paper evaluates a new type of dependence predic-
size, Store Sets (ideally centralized, no message latgncie tor, which waits for some number of matching stores or
still achieves 94% of ideal performance, but the difficulty 0  other local events to complete before allowing a load to
supporting a distributed Store Sets-like protocol incesas  issue. The main advantage of this scheme is that the pre-

diction mechanism is decoupled from reliance on observa-
6.5 Sensitivity Studies tion of the fetch and execution streams. The best configu-
ration achieves 92% of oracular performance, in an instruc-

The graph in Figure 7 shows the performance gain from tion window of up to 2,048 instructions with up to 512 loads
incrementally adding the modifications described in Sec- or stores.



The simplicity of the CDP allows it to be easily imple-
mented in a distributed microarchitecture. Despite its-sim
plicity, it significantly outperforms another policy, Load
Wait, which is as easy to distribute. Predictors similar to
Store Sets and the Exclusive Collision Predictor require ac g
cess to a centralized fetch stream and global execution in-
formation. CDPs use only information that is easily made
available locally, yet still achieve good performance.

CDPs may be at a disadvantage when loads are not con-
sistently dependent on the same number of stores. They are
also sensitive to overly conservative prediction, eithgr b [1q]
predicting an independent load to wait on one store match
that never arrives, or by predicting a load to be conserva-
tive, which prevents violations, but will make any load wait
longer than it needs to (no load is dependent on all older
stores). By slightly complicating the CDP design, such as
by allowing predictions of some number of store matches [1]
between one and all, or by using path-based or other in-
formation to address fluctuating numbers of store matches,
CDP performance may be improved further without com-
promising its ability to support fully distributed exeauori.
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